14 research outputs found

    Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems

    Get PDF
    In this paper, a new class of generalized of nonconvex multitime multiobjective variational problems is considered. We prove the sufficient optimality conditions for efficiency and proper efficiency in the considered multitime multiobjective variational problems with univex functionals. Further, for such vector variational problems, various duality results in the sense of Mond-Weir and in the sense of Wolfe are established under univexity. The results established in the paper extend and generalize results existing in the literature for such vector variational problems

    Nonsmooth multiobjective optimization using limiting subdifferentials

    Get PDF
    AbstractIn this study, using the properties of limiting subdifferentials in nonsmooth analysis and regarding a separation theorem, some weak Pareto-optimality (necessary and sufficient) conditions for nonsmooth multiobjective optimization problems are proved

    Sufficient optimality criteria and duality for multiobjective variational control problems with G-type I objective and constraint functions

    Get PDF
    In the paper, we introduce the concepts of G-type I and generalized G-type I functions for a new class of nonconvex multiobjective variational control problems. For such nonconvex vector optimization problems, we prove sufficient optimality conditions for weakly efficiency, efficiency and properly efficiency under assumptions that the functions constituting them are G-type I and/or generalized G-type I objective and constraint functions. Further, for the considered multiobjective variational control problem, its dual multiobjective variational control problem is given and several duality results are established under (generalized) G-type I objective and constraint functions

    Generalized -Type I Univex Functions in Multiobjective Optimization

    Get PDF
    A new class of generalized functions (---)-type I univex is introduced for a nonsmooth multiobjective programming problem. Based upon these generalized functions, sufficient optimality conditions are established. Weak, strong, converse, and strict converse duality theorems are also derived for Mond-Weir-type multiobjective dual program

    Nondifferentiable multiobjective programming problem under strongly K-Gf-pseudoinvexity assumptions

    Full text link
    [EN] In this paper we consider the introduction of the concept of (strongly) K-G(f)-pseudoinvex functions which enable to study a pair of nondifferentiable K-G- Mond-Weir type symmetric multiobjective programming model under such assumptions.Dubey, R.; Mishra, LN.; Sánchez Ruiz, LM.; Sarwe, DU. (2020). Nondifferentiable multiobjective programming problem under strongly K-Gf-pseudoinvexity assumptions. Mathematics. 8(5):1-11. https://doi.org/10.3390/math8050738S11185Antczak, T. (2007). New optimality conditions and duality results of type in differentiable mathematical programming. Nonlinear Analysis: Theory, Methods & Applications, 66(7), 1617-1632. doi:10.1016/j.na.2006.02.013Antczak, T. (2008). On G-invex multiobjective programming. Part I. Optimality. Journal of Global Optimization, 43(1), 97-109. doi:10.1007/s10898-008-9299-5Ferrara, M., & Viorica-Stefanescu, M. (2008). Optimality conditions and duality in multiobjective programming with invexity. YUJOR, 18(2), 153-165. doi:10.2298/yjor0802153fChen, X. (2004). Higher-order symmetric duality in nondifferentiable multiobjective programming problems. Journal of Mathematical Analysis and Applications, 290(2), 423-435. doi:10.1016/j.jmaa.2003.10.004Long, X. (2013). Sufficiency and duality for nonsmooth multiobjective programming problems involving generalized univex functions. Journal of Systems Science and Complexity, 26(6), 1002-1018. doi:10.1007/s11424-013-1089-6Dubey, R., Mishra, L. N., & Sánchez Ruiz, L. M. (2019). Nondifferentiable G-Mond–Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions. Symmetry, 11(11), 1348. doi:10.3390/sym11111348Pitea, A., & Postolache, M. (2011). Duality theorems for a new class of multitime multiobjective variational problems. Journal of Global Optimization, 54(1), 47-58. doi:10.1007/s10898-011-9740-zPitea, A., & Antczak, T. (2014). Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems. Journal of Inequalities and Applications, 2014(1). doi:10.1186/1029-242x-2014-333Dubey, R., Deepmala, & Narayan Mishra, V. (2020). Higher-order symmetric duality in nondifferentiable multiobjective fractional programming problem over cone contraints. Statistics, Optimization & Information Computing, 8(1), 187-205. doi:10.19139/soic-2310-5070-60

    On semi-G-V-type I concepts for directionally differentiable multiobjective programming problems

    Get PDF

    Symbolic approaches and artificial intelligence algorithms for solving multi-objective optimisation problems

    Get PDF
    Problems that have more than one objective function are of great importance in engineering sciences and many other disciplines. This class of problems are known as multi-objective optimisation problems (or multicriteria). The difficulty here lies in the conflict between the various objective functions. Due to this conflict, one cannot find a single ideal solution which simultaneously satisfies all the objectives. But instead one can find the set of Pareto-optimal solutions (Pareto-optimal set) and consequently the Pareto-optimal front is established. Finding these solutions plays an important role in multi-objective optimisation problems and mathematically the problem is considered to be solved when the Pareto-optimal set, i.e. the set of all compromise solutions is found. The Pareto-optimal set may contain information that can help the designer make a decision and thus arrive at better trade-off solutions. The aim of this research is to develop new multi-objective optimisation symbolic algorithms capable of detecting relationship(s) among decision variables that can be used for constructing the analytical formula of Pareto-optimal front based on the extension of the current optimality conditions. A literature survey of theoretical and evolutionary computation techniques for handling multiple objectives, constraints and variable interaction highlights a lack of techniques to handle variable interaction. This research, therefore, focuses on the development of techniques for detecting the relationships between the decision variables (variable interaction) in the presence of multiple objectives and constraints. It attempts to fill the gap in this research by formally extending the theoretical results (optimality conditions). The research then proposes first-order multi-objective symbolic algorithm or MOSA-I and second-order multi-objective symbolic algorithm or MOSA-II that are capable of detecting the variable interaction. The performance of these algorithms is analysed and compared to a current state-of-the-art optimisation algorithm using popular test problems. The performance of the MOSA-II algorithm is finally validated using three appropriately chosen problems from literature. In this way, this research proposes a fully tested and validated methodology for dealing with multi-objective optimisation problems. In conclusion, this research proposes two new symbolic algorithms that are used for identifying the variable interaction responsible for constructing Pareto-optimal front among objectives in multi-objective optimisation problems. This is completed based on a development and relaxation of the first and second-order optimality conditions of Karush-Kuhn-Tucker.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On Higher-order Duality in Nondifferentiable Minimax Fractional Programming

    Get PDF
    In this paper, we consider a nondifferentiable minimax fractional programming problem with continuously differentiable functions and formulated two types of higher-order dual models for such optimization problem.Weak, strong and strict converse duality theorems are derived under higherorder generalized invexity
    corecore