36,313 research outputs found

    Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems

    Full text link
    In this paper we review basic and emerging models and associated algorithms for large-scale tensor networks, especially Tensor Train (TT) decompositions using novel mathematical and graphical representations. We discus the concept of tensorization (i.e., creating very high-order tensors from lower-order original data) and super compression of data achieved via quantized tensor train (QTT) networks. The purpose of a tensorization and quantization is to achieve, via low-rank tensor approximations "super" compression, and meaningful, compact representation of structured data. The main objective of this paper is to show how tensor networks can be used to solve a wide class of big data optimization problems (that are far from tractable by classical numerical methods) by applying tensorization and performing all operations using relatively small size matrices and tensors and applying iteratively optimized and approximative tensor contractions. Keywords: Tensor networks, tensor train (TT) decompositions, matrix product states (MPS), matrix product operators (MPO), basic tensor operations, tensorization, distributed representation od data optimization problems for very large-scale problems: generalized eigenvalue decomposition (GEVD), PCA/SVD, canonical correlation analysis (CCA).Comment: arXiv admin note: text overlap with arXiv:1403.204

    Tensor Networks for Solving Realistic Time-independent Boltzmann Neutron Transport Equation

    Full text link
    Tensor network techniques, known for their low-rank approximation ability that breaks the curse of dimensionality, are emerging as a foundation of new mathematical methods for ultra-fast numerical solutions of high-dimensional Partial Differential Equations (PDEs). Here, we present a mixed Tensor Train (TT)/Quantized Tensor Train (QTT) approach for the numerical solution of time-independent Boltzmann Neutron Transport equations (BNTEs) in Cartesian geometry. Discretizing a realistic three-dimensional (3D) BNTE by (i) diamond differencing, (ii) multigroup-in-energy, and (iii) discrete ordinate collocation leads to huge generalized eigenvalue problems that generally require a matrix-free approach and large computer clusters. Starting from this discretization, we construct a TT representation of the PDE fields and discrete operators, followed by a QTT representation of the TT cores and solving the tensorized generalized eigenvalue problem in a fixed-point scheme with tensor network optimization techniques. We validate our approach by applying it to two realistic examples of 3D neutron transport problems, currently solved by the PARallel TIme-dependent SN (PARTISN) solver. We demonstrate that our TT/QTT method, executed on a standard desktop computer, leads to a yottabyte compression of the memory storage, and more than 7500 times speedup with a discrepancy of less than 1e-5 when compared to the PARTISN solution.Comment: 38 pages, 9 figure

    A Semismooth Newton Method for Tensor Eigenvalue Complementarity Problem

    Full text link
    In this paper, we consider the tensor eigenvalue complementarity problem which is closely related to the optimality conditions for polynomial optimization, as well as a class of differential inclusions with nonconvex processes. By introducing an NCP-function, we reformulate the tensor eigenvalue complementarity problem as a system of nonlinear equations. We show that this function is strongly semismooth but not differentiable, in which case the classical smoothing methods cannot apply. Furthermore, we propose a damped semismooth Newton method for tensor eigenvalue complementarity problem. A new procedure to evaluate an element of the generalized Jocobian is given, which turns out to be an element of the B-subdifferential under mild assumptions. As a result, the convergence of the damped semismooth Newton method is guaranteed by existing results. The numerical experiments also show that our method is efficient and promising

    Towards tensor-based methods for the numerical approximation of the Perron-Frobenius and Koopman operator

    Full text link
    The global behavior of dynamical systems can be studied by analyzing the eigenvalues and corresponding eigenfunctions of linear operators associated with the system. Two important operators which are frequently used to gain insight into the system's behavior are the Perron-Frobenius operator and the Koopman operator. Due to the curse of dimensionality, computing the eigenfunctions of high-dimensional systems is in general infeasible. We will propose a tensor-based reformulation of two numerical methods for computing finite-dimensional approximations of the aforementioned infinite-dimensional operators, namely Ulam's method and Extended Dynamic Mode Decomposition (EDMD). The aim of the tensor formulation is to approximate the eigenfunctions by low-rank tensors, potentially resulting in a significant reduction of the time and memory required to solve the resulting eigenvalue problems, provided that such a low-rank tensor decomposition exists. Typically, not all variables of a high-dimensional dynamical system contribute equally to the system's behavior, often the dynamics can be decomposed into slow and fast processes, which is also reflected in the eigenfunctions. Thus, the weak coupling between different variables might be approximated by low-rank tensor cores. We will illustrate the efficiency of the tensor-based formulation of Ulam's method and EDMD using simple stochastic differential equations
    corecore