250 research outputs found

    Integers in number systems with positive and negative quadratic Pisot base

    Full text link
    We consider numeration systems with base β\beta and β-\beta, for quadratic Pisot numbers β\beta and focus on comparing the combinatorial structure of the sets Zβ\Z_\beta and Zβ\Z_{-\beta} of numbers with integer expansion in base β\beta, resp. β-\beta. Our main result is the comparison of languages of infinite words uβu_\beta and uβu_{-\beta} coding the ordering of distances between consecutive β\beta- and (β)(-\beta)-integers. It turns out that for a class of roots β\beta of x2mxmx^2-mx-m, the languages coincide, while for other quadratic Pisot numbers the language of uβu_\beta can be identified only with the language of a morphic image of uβu_{-\beta}. We also study the group structure of (β)(-\beta)-integers.Comment: 19 pages, 5 figure

    On a generalization of Abelian equivalence and complexity of infinite words

    Full text link
    In this paper we introduce and study a family of complexity functions of infinite words indexed by k \in \ints ^+ \cup {+\infty}. Let k \in \ints ^+ \cup {+\infty} and AA be a finite non-empty set. Two finite words uu and vv in AA^* are said to be kk-Abelian equivalent if for all xAx\in A^* of length less than or equal to k,k, the number of occurrences of xx in uu is equal to the number of occurrences of xx in v.v. This defines a family of equivalence relations k\thicksim_k on A,A^*, bridging the gap between the usual notion of Abelian equivalence (when k=1k=1) and equality (when k=+).k=+\infty). We show that the number of kk-Abelian equivalence classes of words of length nn grows polynomially, although the degree is exponential in k.k. Given an infinite word \omega \in A^\nats, we consider the associated complexity function \mathcal {P}^{(k)}_\omega :\nats \rightarrow \nats which counts the number of kk-Abelian equivalence classes of factors of ω\omega of length n.n. We show that the complexity function P(k)\mathcal {P}^{(k)} is intimately linked with periodicity. More precisely we define an auxiliary function q^k: \nats \rightarrow \nats and show that if Pω(k)(n)<qk(n)\mathcal {P}^{(k)}_{\omega}(n)<q^k(n) for some k \in \ints ^+ \cup {+\infty} and n0,n\geq 0, the ω\omega is ultimately periodic. Moreover if ω\omega is aperiodic, then Pω(k)(n)=qk(n)\mathcal {P}^{(k)}_{\omega}(n)=q^k(n) if and only if ω\omega is Sturmian. We also study kk-Abelian complexity in connection with repetitions in words. Using Szemer\'edi's theorem, we show that if ω\omega has bounded kk-Abelian complexity, then for every D\subset \nats with positive upper density and for every positive integer N,N, there exists a kk-Abelian NN power occurring in ω\omega at some position $j\in D.

    Cyclic Complexity of Words

    Get PDF
    We introduce and study a complexity function on words cx(n),c_x(n), called \emph{cyclic complexity}, which counts the number of conjugacy classes of factors of length nn of an infinite word x.x. We extend the well-known Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity distinguishes between Sturmian words of different slopes. We prove that if xx is a Sturmian word and yy is a word having the same cyclic complexity of x,x, then up to renaming letters, xx and yy have the same set of factors. In particular, yy is also Sturmian of slope equal to that of x.x. Since cx(n)=1c_x(n)=1 for some n1n\geq 1 implies xx is periodic, it is natural to consider the quantity lim infncx(n).\liminf_{n\rightarrow \infty} c_x(n). We show that if xx is a Sturmian word, then lim infncx(n)=2.\liminf_{n\rightarrow \infty} c_x(n)=2. We prove however that this is not a characterization of Sturmian words by exhibiting a restricted class of Toeplitz words, including the period-doubling word, which also verify this same condition on the limit infimum. In contrast we show that, for the Thue-Morse word tt, lim infnct(n)=+.\liminf_{n\rightarrow \infty} c_t(n)=+\infty.Comment: To appear in Journal of Combinatorial Theory, Series

    Inverse problems of symbolic dynamics

    Full text link
    This paper reviews some results regarding symbolic dynamics, correspondence between languages of dynamical systems and combinatorics. Sturmian sequences provide a pattern for investigation of one-dimensional systems, in particular interval exchange transformation. Rauzy graphs language can express many important combinatorial and some dynamical properties. In this case combinatorial properties are considered as being generated by substitutional system, and dynamical properties are considered as criteria of superword being generated by interval exchange transformation. As a consequence, one can get a morphic word appearing in interval exchange transformation such that frequencies of letters are algebraic numbers of an arbitrary degree. Concerning multydimensional systems, our main result is the following. Let P(n) be a polynomial, having an irrational coefficient of the highest degree. A word ww (w=(w_n), n\in \nit) consists of a sequence of first binary numbers of {P(n)}\{P(n)\} i.e. wn=[2{P(n)}]w_n=[2\{P(n)\}]. Denote the number of different subwords of ww of length kk by T(k)T(k) . \medskip {\bf Theorem.} {\it There exists a polynomial Q(k)Q(k), depending only on the power of the polynomial PP, such that T(k)=Q(k)T(k)=Q(k) for sufficiently great kk.

    A Note on Symmetries in the Rauzy Graph and Factor Frequencies

    Get PDF
    We focus on infinite words with languages closed under reversal. If frequencies of all factors are well defined, we show that the number of different frequencies of factors of length n+1 does not exceed 2C(n+1)-2C(n)+1.Comment: 7 page
    corecore