40,968 research outputs found

    Comptonization of the cosmic microwave background by high energy particles residing in AGN cocoons

    Full text link
    X-ray cavities and extended radio sources (`cocoons') surrounding active galactic nuclei (AGN) have been detected by the Chandra X-ray mission and radio interferometers. A joint analysis of X-ray and radio maps suggests that pressure values of non-thermal radio-emitting particles derived from the radio maps are not sufficient to inflate the X-ray cavities. We propose using the Sunyaev-Zel'dovich (SZ) effect, whose intensity strongly depends on the pressure, to find the hitherto undetected, dynamically-dominant component in the radio cocoons. We demonstrate that the spectral function at a frequency of 217 GHz has an absolute maximum at a temperature higher than 10910^9 K, therefore the measurement of the SZ effect at this frequency is a powerful tool for potentially revealing the dynamically-dominant component inside AGN jet-driven radio cocoons. A new method is proposed for excluding the contribution from the low energy, non-relativistic electrons to the SZ effect by means of observations at two frequencies. We show how one may correct for a possible contribution from the kinematic SZ effect. The intensity maps of the SZ effect are calculated for the self-similar Sedov solution, and application of a predicted ring-like structure on the SZ map at a frequency of 217 GHz is proposed to determine the energy released during the active jet stage. The SZ intensity map for an AGN cocoon in a distant elliptical is calculated using a 2-D numerical simulation and including relativistic corrections to the SZ effect. We show the intensity spectrum of the SZ effect is flat at high frequencies if gas temperature is as high as kbTe=500k_\mathrm{b} T_{\mathrm{e}}=500 keV.Comment: 12 pages, 15 figures, accepted for publication in Astronomy and Astrophysic

    External Mass Accumulation onto Core Potentials: Implications for Star Clusters, Galaxies and Galaxy Clusters

    Full text link
    Accretion studies have been focused on the flow around bodies with point mass gravitational potentials, but few general results are available for non-point mass distributions. Here, we study the accretion flow onto non-divergent, core potentials moving through a background medium. We use Plummer and Hernquist potentials as examples to study gas accretion onto star clusters, dwarf and large galaxy halos and galaxy clusters in a variety of astrophysical environments. The general conditions required for a core potential to collectively accrete large quantities of gas from the external medium are derived using both simulations and analytic results. The consequences of large mass accumulation in galaxy nuclei, dwarf galaxies and star clusters are twofold. First, if the gas cools effectively star formation can be triggered, generating new stellar members in the system. Second, if the collective potential of the system is able to alter the ambient gas properties before the gas is accreted onto the individual core members, the augmented mass supply rates could significantly alter the state of the various accreting stellar populations and result in an enhanced central black hole accretion luminosity.Comment: 24 pages, 15 figures, accepted to Ap

    The Evolution of X-ray Clusters and the Entropy of the Intra Cluster Medium

    Full text link
    The thermodynamics of the diffuse, X-ray emitting gas in clusters of galaxies is determined by gravitational processes associated with shock heating, adiabatic compression, and non-gravitational processes such as heating by SNe, stellar winds, activity in the central galactic nucleus, and radiative cooling. The effect of gravitational processes on the thermodynamics of the Intra Cluster Medium (ICM) can be expressed in terms of the ICM entropy S ~ ln(T/\rho^{2/3}). We use a generalized spherical model to compute the X-ray properties of groups and clusters for a range of initial entropy levels in the ICM and for a range of mass scales, cosmic epochs and background cosmologies. We find that the statistical properties of the X-ray clusters strongly depend on the value of the initial excess entropy. Assuming a constant, uniform value for the excess entropy, the present-day X-ray data are well fitted for the following range of values K_* = kT/\mu m_p \rho^{2/3} = (0.4\pm 0.1) \times 10^{34} erg cm^2 g^{-5/3} for clusters with average temperatures kT>2 keV; K_* = (0.2\pm 0.1) \times 10^{34} erg cm^2 g^{-5/3} for groups and clusters with average temperatures kT<2 keV. These values correspond to different excess energy per particle of kT \geq 0.1 (K_*/0.4\times 10^{34}) keV. The dependence of K_* on the mass scale can be well reproduced by an epoch dependent external entropy: the relation K_* = 0.8(1+z)^{-1}\times 10^{34} erg cm^2 g^{-5/3} fits the data over the whole temperature range. Observations of both local and distant clusters can be used to trace the distribution and the evolution of the entropy in the cosmic baryons, and ultimately to unveil the typical epoch and the source of the heating processes.Comment: 53 pages, LateX, 19 figures, ApJ in press, relevant comments and references adde

    Screening and metamodeling of computer experiments with functional outputs. Application to thermal-hydraulic computations

    Get PDF
    To perform uncertainty, sensitivity or optimization analysis on scalar variables calculated by a cpu time expensive computer code, a widely accepted methodology consists in first identifying the most influential uncertain inputs (by screening techniques), and then in replacing the cpu time expensive model by a cpu inexpensive mathematical function, called a metamodel. This paper extends this methodology to the functional output case, for instance when the model output variables are curves. The screening approach is based on the analysis of variance and principal component analysis of output curves. The functional metamodeling consists in a curve classification step, a dimension reduction step, then a classical metamodeling step. An industrial nuclear reactor application (dealing with uncertainties in the pressurized thermal shock analysis) illustrates all these steps

    Conformal mapping methods for interfacial dynamics

    Full text link
    The article provides a pedagogical review aimed at graduate students in materials science, physics, and applied mathematics, focusing on recent developments in the subject. Following a brief summary of concepts from complex analysis, the article begins with an overview of continuous conformal-map dynamics. This includes problems of interfacial motion driven by harmonic fields (such as viscous fingering and void electromigration), bi-harmonic fields (such as viscous sintering and elastic pore evolution), and non-harmonic, conformally invariant fields (such as growth by advection-diffusion and electro-deposition). The second part of the article is devoted to iterated conformal maps for analogous problems in stochastic interfacial dynamics (such as diffusion-limited aggregation, dielectric breakdown, brittle fracture, and advection-diffusion-limited aggregation). The third part notes that all of these models can be extended to curved surfaces by an auxilliary conformal mapping from the complex plane, such as stereographic projection to a sphere. The article concludes with an outlook for further research.Comment: 37 pages, 12 (mostly color) figure

    Statistics of seismic cluster durations

    Full text link
    Using the standard ETAS model of triggered seismicity, we present a rigorous theoretical analysis of the main statistical properties of temporal clusters, defined as the group of events triggered by a given main shock of fixed magnitude m that occurred at the origin of time, at times larger than some present time t. Using the technology of generating probability function (GPF), we derive the explicit expressions for the GPF of the number of future offsprings in a given temporal seismic cluster, defining, in particular, the statistics of the cluster's duration and the cluster's offsprings maximal magnitudes. We find the remarkable result that the magnitude difference between the largest and second largest event in the future temporal cluster is distributed according to the regular Gutenberg-Richer law that controls the unconditional distribution of earthquake magnitudes. For earthquakes obeying the Omori-Utsu law for the distribution of waiting times between triggering and triggered events, we show that the distribution of the durations of temporal clusters of events of magnitudes above some detection threshold \nu has a power law tail that is fatter in the non-critical regime n<1n<1 than in the critical case n=1. This paradoxical behavior can be rationalised from the fact that generations of all orders cascade very fast in the critical regime and accelerate the temporal decay of the cluster dynamics.Comment: 45 pages, 15 figure

    Inference on the tail process with application to financial time series modelling

    Full text link
    To draw inference on serial extremal dependence within heavy-tailed Markov chains, Drees, Segers and Warcho{\l} [Extremes (2015) 18, 369--402] proposed nonparametric estimators of the spectral tail process. The methodology can be extended to the more general setting of a stationary, regularly varying time series. The large-sample distribution of the estimators is derived via empirical process theory for cluster functionals. The finite-sample performance of these estimators is evaluated via Monte Carlo simulations. Moreover, two different bootstrap schemes are employed which yield confidence intervals for the pre-asymptotic spectral tail process: the stationary bootstrap and the multiplier block bootstrap. The estimators are applied to stock price data to study the persistence of positive and negative shocks.Comment: 22 page
    • …
    corecore