322 research outputs found

    Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games using Baselines

    Full text link
    Learning strategies for imperfect information games from samples of interaction is a challenging problem. A common method for this setting, Monte Carlo Counterfactual Regret Minimization (MCCFR), can have slow long-term convergence rates due to high variance. In this paper, we introduce a variance reduction technique (VR-MCCFR) that applies to any sampling variant of MCCFR. Using this technique, per-iteration estimated values and updates are reformulated as a function of sampled values and state-action baselines, similar to their use in policy gradient reinforcement learning. The new formulation allows estimates to be bootstrapped from other estimates within the same episode, propagating the benefits of baselines along the sampled trajectory; the estimates remain unbiased even when bootstrapping from other estimates. Finally, we show that given a perfect baseline, the variance of the value estimates can be reduced to zero. Experimental evaluation shows that VR-MCCFR brings an order of magnitude speedup, while the empirical variance decreases by three orders of magnitude. The decreased variance allows for the first time CFR+ to be used with sampling, increasing the speedup to two orders of magnitude

    Counterfactual Risk Minimization: Learning from Logged Bandit Feedback

    Full text link
    We develop a learning principle and an efficient algorithm for batch learning from logged bandit feedback. This learning setting is ubiquitous in online systems (e.g., ad placement, web search, recommendation), where an algorithm makes a prediction (e.g., ad ranking) for a given input (e.g., query) and observes bandit feedback (e.g., user clicks on presented ads). We first address the counterfactual nature of the learning problem through propensity scoring. Next, we prove generalization error bounds that account for the variance of the propensity-weighted empirical risk estimator. These constructive bounds give rise to the Counterfactual Risk Minimization (CRM) principle. We show how CRM can be used to derive a new learning method -- called Policy Optimizer for Exponential Models (POEM) -- for learning stochastic linear rules for structured output prediction. We present a decomposition of the POEM objective that enables efficient stochastic gradient optimization. POEM is evaluated on several multi-label classification problems showing substantially improved robustness and generalization performance compared to the state-of-the-art.Comment: 10 page

    Hierarchical Deep Counterfactual Regret Minimization

    Full text link
    Imperfect Information Games (IIGs) offer robust models for scenarios where decision-makers face uncertainty or lack complete information. Counterfactual Regret Minimization (CFR) has been one of the most successful family of algorithms for tackling IIGs. The integration of skill-based strategy learning with CFR could potentially enhance learning performance for complex IIGs. For this, a hierarchical strategy needs to be learnt, wherein low-level components represent specific skills and the high-level component manages the transition between skills. This hierarchical approach also enhances interpretability, helping humans pinpoint scenarios where the agent is struggling and intervene with targeted expertise. This paper introduces the first hierarchical version of Deep CFR (HDCFR), an innovative method that boosts learning efficiency in tasks involving extensively large state spaces and deep game trees. A notable advantage of HDCFR over previous research in this field is its ability to facilitate learning with predefined (human) expertise and foster the acquisition of transferable skills that can be applied to similar tasks. To achieve this, we initially construct our algorithm on a tabular setting, encompassing hierarchical CFR updating rules and a variance-reduced Monte-Carlo sampling extension, and offer its essential theoretical guarantees. Then, to adapt our algorithm for large-scale applications, we employ neural networks as function approximators and suggest deep learning objectives that coincide with those in the tabular setting while maintaining the theoretical outcomes
    • …
    corecore