31,066 research outputs found

    Integration over connections in the discretized gravitational functional integrals

    Full text link
    The result of performing integrations over connection type variables in the path integral for the discrete field theory may be poorly defined in the case of non-compact gauge group with the Haar measure exponentially growing in some directions. This point is studied in the case of the discrete form of the first order formulation of the Einstein gravity theory. Here the result of interest can be defined as generalized function (of the rest of variables of the type of tetrad or elementary areas) i. e. a functional on a set of probe functions. To define this functional, we calculate its values on the products of components of the area tensors, the so-called moments. The resulting distribution (in fact, probability distribution) has singular (δ\delta-function-like) part with support in the nonphysical region of the complex plane of area tensors and regular part (usual function) which decays exponentially at large areas. As we discuss, this also provides suppression of large edge lengths which is important for internal consistency, if one asks whether gravity on short distances can be discrete. Some another features of the obtained probability distribution including occurrence of the local maxima at a number of the approximately equidistant values of area are also considered.Comment: 22 page

    Attributing sense to some integrals in Regge calculus

    Full text link
    Regge calculus minisuperspace action in the connection representation has the form in which each term is linear over some field variable (scale of area-type variable with sign). We are interested in the result of performing integration over connections in the path integral (now usual multiple integral) as function of area tensors even in larger region considered as independent variables. To find this function (or distribution), we compute its moments, i. e. integrals with monomials over area tensors. Calculation proceeds through intermediate appearance of δ\delta-functions and integrating them out. Up to a singular part with support on some discrete set of physically unattainable points, the function of interest has finite moments. This function in physical region should therefore exponentially decay at large areas and it really does being restored from moments. This gives for gravity a way of defining such nonabsolutely convergent integral as path integral.Comment: 14 pages, presentation improve

    Regge gravity from spinfoams

    Full text link
    We consider spinfoam quantum gravity for general triangulations in the regime lP2≪a≪a/γl_P^2\ll a\ll a/\gamma, namely in the combined classical limit of large areas aa and flipped limit of small Barbero-Immirzi parameter γ\gamma, where lPl_P is the Planck length. Under few working hypotheses we find that the flipped limit enforces the constraints that turn the spinfoam theory into an effective Regge-like quantum theory with lengths as variables, while the classical limit selects among the possible geometries the ones satisfying the Einstein equations. Two kinds of quantum corrections appear in terms of powers of lP2/al^2_P/a and γlP2/a\gamma l_P^2/a. The result also suggests that the Barbero-Immirzi parameter may run to smaller values under coarse-graining of the triangulation.Comment: 18 pages, presentation substantially improve

    Infrared spectroscopy of diatomic molecules - a fractional calculus approach

    Full text link
    The eigenvalue spectrum of the fractional quantum harmonic oscillator is calculated numerically solving the fractional Schr\"odinger equation based on the Riemann and Caputo definition of a fractional derivative. The fractional approach allows a smooth transition between vibrational and rotational type spectra, which is shown to be an appropriate tool to analyze IR spectra of diatomic molecules.Comment: revised + extended version, 9 pages, 6 figure

    Noether Symmetries and Covariant Conservation Laws in Classical, Relativistic and Quantum Physics

    Full text link
    We review the Lagrangian formulation of Noether symmetries (as well as "generalized Noether symmetries") in the framework of Calculus of Variations in Jet Bundles, with a special attention to so-called "Natural Theories" and "Gauge-Natural Theories", that include all relevant Field Theories and physical applications (from Mechanics to General Relativity, to Gauge Theories, Supersymmetric Theories, Spinors and so on). It is discussed how the use of Poincare'-Cartan forms and decompositions of natural (or gauge-natural) variational operators give rise to notions such as "generators of Noether symmetries", energy and reduced energy flow, Bianchi identities, weak and strong conservation laws, covariant conservation laws, Hamiltonian-like conservation laws (such as, e.g., so-called ADM laws in General Relativity) with emphasis on the physical interpretation of the quantities calculated in specific cases (energy, angular momentum, entropy, etc.). A few substantially new and very recent applications/examples are presented to better show the power of the methods introduced: one in Classical Mechanics (definition of strong conservation laws in a frame-independent setting and a discussion on the way in which conserved quantities depend on the choice of an observer); one in Classical Field Theories (energy and entropy in General Relativity, in its standard formulation, in its spin-frame formulation, in its first order formulation "`a la Palatini" and in its extensions to Non-Linear Gravity Theories); one in Quantum Field Theories (applications to conservation laws in Loop Quantum Gravity via spin connections and Barbero-Immirzi connections).Comment: 27 page

    Defining integrals over connections in the discretized gravitational functional integral

    Full text link
    Integration over connection type variables in the path integral for the discrete form of the first order formulation of general relativity theory is studied. The result (a generalized function of the rest of variables of the type of tetrad or elementary areas) can be defined through its moments, i. e. integrals of it with the area tensor monomials. In our previous paper these moments have been defined by deforming integration contours in the complex plane as if we had passed to an Euclidean-like region. In the present paper we define and evaluate the moments in the genuine Minkowsky region. The distribution of interest resulting from these moments in this non-positively defined region contains the divergences. We prove that the latter contribute only to the singular (\dfun like) part of this distribution with support in the non-physical region of the complex plane of area tensors while in the physical region this distribution (usual function) confirms that defined in our previous paper which decays exponentially at large areas. Besides that, we evaluate the basic integrals over which the integral over connections in the general path integral can be expanded.Comment: 18 page

    Fractional Dynamics from Einstein Gravity, General Solutions, and Black Holes

    Full text link
    We study the fractional gravity for spacetimes with non-integer dimensions. Our constructions are based on a geometric formalism with the fractional Caputo derivative and integral calculus adapted to nonolonomic distributions. This allows us to define a fractional spacetime geometry with fundamental geometric/physical objects and a generalized tensor calculus all being similar to respective integer dimension constructions. Such models of fractional gravity mimic the Einstein gravity theory and various Lagrange-Finsler and Hamilton-Cartan generalizations in nonholonomic variables. The approach suggests a number of new implications for gravity and matter field theories with singular, stochastic, kinetic, fractal, memory etc processes. We prove that the fractional gravitational field equations can be integrated in very general forms following the anholonomic deformation method for constructing exact solutions. Finally, we study some examples of fractional black hole solutions, fractional ellipsoid gravitational configurations and imbedding of such objects in fractional solitonic backgrounds.Comment: latex2e, 11pt, 40 pages with table of conten
    • …
    corecore