333 research outputs found

    Improved Accuracy and Parallelism for MRRR-based Eigensolvers -- A Mixed Precision Approach

    Get PDF
    The real symmetric tridiagonal eigenproblem is of outstanding importance in numerical computations; it arises frequently as part of eigensolvers for standard and generalized dense Hermitian eigenproblems that are based on a reduction to tridiagonal form. For its solution, the algorithm of Multiple Relatively Robust Representations (MRRR) is among the fastest methods. Although fast, the solvers based on MRRR do not deliver the same accuracy as competing methods like Divide & Conquer or the QR algorithm. In this paper, we demonstrate that the use of mixed precisions leads to improved accuracy of MRRR-based eigensolvers with limited or no performance penalty. As a result, we obtain eigensolvers that are not only equally or more accurate than the best available methods, but also -in most circumstances- faster and more scalable than the competition

    Singular Value Computation and Subspace Clustering

    Get PDF
    In this dissertation we discuss two problems. In the first part, we consider the problem of computing a few extreme eigenvalues of a symmetric definite generalized eigenvalue problem or a few extreme singular values of a large and sparse matrix. The standard method of choice of computing a few extreme eigenvalues of a large symmetric matrix is the Lanczos or the implicitly restarted Lanczos method. These methods usually employ a shift-and-invert transformation to accelerate the speed of convergence, which is not practical for truly large problems. With this in mind, Golub and Ye proposes an inverse-free preconditioned Krylov subspace method, which uses preconditioning instead of shift-and-invert to accelerate the convergence. To compute several eigenvalues, Wielandt is used in a straightforward manner. However, the Wielandt deflation alters the structure of the problem and may cause some difficulties in certain applications such as the singular value computations. So we first propose to consider a deflation by restriction method for the inverse-free Krylov subspace method. We generalize the original convergence theory for the inverse-free preconditioned Krylov subspace method to justify this deflation scheme. We next extend the inverse-free Krylov subspace method with deflation by restriction to the singular value problem. We consider preconditioning based on robust incomplete factorization to accelerate the convergence. Numerical examples are provided to demonstrate efficiency and robustness of the new algorithm. In the second part of this thesis, we consider the so-called subspace clustering problem, which aims for extracting a multi-subspace structure from a collection of points lying in a high-dimensional space. Recently, methods based on self expressiveness property (SEP) such as Sparse Subspace Clustering and Low Rank Representations have been shown to enjoy superior performances than other methods. However, methods with SEP may result in representations that are not amenable to clustering through graph partitioning. We propose a method where the points are expressed in terms of an orthonormal basis. The orthonormal basis is optimally chosen in the sense that the representation of all points is sparsest. Numerical results are given to illustrate the effectiveness and efficiency of this method

    On pole-swapping algorithms for the eigenvalue problem

    Full text link
    Pole-swapping algorithms, which are generalizations of the QZ algorithm for the generalized eigenvalue problem, are studied. A new modular (and therefore more flexible) convergence theory that applies to all pole-swapping algorithms is developed. A key component of all such algorithms is a procedure that swaps two adjacent eigenvalues in a triangular pencil. An improved swapping routine is developed, and its superiority over existing methods is demonstrated by a backward error analysis and numerical tests. The modularity of the new convergence theory and the generality of the pole-swapping approach shed new light on bi-directional chasing algorithms, optimally packed shifts, and bulge pencils, and allow the design of novel algorithms

    GENERALIZATIONS OF AN INVERSE FREE KRYLOV SUBSPACE METHOD FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM

    Get PDF
    Symmetric generalized eigenvalue problems arise in many physical applications and frequently only a few of the eigenpairs are of interest. Typically, the problems are large and sparse, and therefore traditional methods such as the QZ algorithm may not be considered. Moreover, it may be impractical to apply shift-and-invert Lanczos, a favored method for problems of this type, due to difficulties in applying the inverse of the shifted matrix. With these difficulties in mind, Golub and Ye developed an inverse free Krylov subspace algorithm for the symmetric generalized eigenvalue problem. This method does not rely on shift-and-invert transformations for convergence acceleration, but rather a preconditioner is used. The algorithm suffers, however, in the presence of multiple or clustered eigenvalues. Also, it is only applicable to the location of extreme eigenvalues. In this work, we extend the method of Golub and Ye by developing a block generalization of their algorithm which enjoys considerably faster convergence than the usual method in the presence of multiplicities and clusters. Preconditioning techniques for the problems are discussed at length, and some insight is given into how these preconditioners accelerate the method. Finally we discuss a transformation which can be applied so that the algorithm extracts interior eigenvalues. A preconditioner based on a QR factorization with respect to the B-1 inner product is developed and applied in locating interior eigenvalues
    • …
    corecore