260 research outputs found

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Škrjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Škrjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Škrjanc and Edwin Lughofer acknowledges the support by the ”LCM — K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3

    Adaptive structure radial basis function network model for processes with operating region migration

    Get PDF
    An adaptive structure radial basis function (RBF) network model is proposed in this paper to model nonlinear processes with operating region migration. The recursive orthogonal least squares algorithm is adopted to select new centers on-line, as well as to train the network weights. Based on the R matrix in the orthogonal decomposition, an initial center bank is formed and updated in each sample period. A new learning strategy is proposed to gain information from the new data for network structure adaptation. A center grouping algorithm is also developed to divide the centers into active and non-active groups, so that a structure with a smaller size is maintained in the final network model. The proposed RBF model is evaluated and compared to the two fixed-structure RBF networks by modeling a nonlinear time-varying numerical example. The results demonstrate that the proposed adaptive structure model is capable of adapting its structure to fit the operating region of the process effectively with a more compact structure and it significantly outperforms the two fixed structure RBF models

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Development of Adaptive and Factorized Neural Models for MPC of Industrial Systems

    Get PDF
    Many industrial processes have non-linear and time-varying dynamics, for which the control and optimization require further investigations. Adaptive modelling techniques using radial basis function (RBF) networks often provide competitive modelling performances but encounter slow recovery speed when processes operating regions are shifted largely. In addition, RBF networks based model predictive control results as a non-linear programming problem, which restricts the application to fast dynamic systems. To these targets, the thesis presents the development of adaptive and factorized RBF network models. Model predictive control (MPC) based on the factorized RBF model is applied to a non-linear proton exchange membrane fuel cell (PEMFC) stack system. The main contents include three parts: RBF model adaptation; model factorization and fast long-range prediction; and MPC for the PEMFC stack system. The adaptive RBF model employs the recursive orthogonal least squares (ROLS) algorithm for both structure and parameter adaptation. In decomposing the regression matrix of the RBF model, the R matrix is obtained. Principles for adding centres and pruning centres are developed based on the manipulation of the R matrix. While the modelling accuracy is remained, the developed structure adaptation algorithm ensures the model size to be kept to the minimum. At the same time, the RBF model parameters are optimized in terms of minimum Frobenius norm of the model prediction error. A simulation example is used to evaluate the developed adaptive RBF model, and the model performance in output prediction is superior over the existing methods. Considering that a model with fast long-range prediction is needed for the MPC of fast dynamic systems, a f-step factorization algorithm is developed for the RBF model. The model structure is re-arranged so that the unknown future process outputs are not required for output prediction. Therefore, the accumulative error caused by recursive calculation in normal neural network model is avoided. Furthermore, as the information for output prediction is explicitly divided into the past information and the future information, the optimization of the control variable in the MPC based on this developed factorized model can be solved much faster than the normal NARX-RBF model. The developed model adaptation algorithm can be applied to this f-step factorized model to achieve fast and adaptive model prediction. Finally, the developed factorized RBF model is applied to the MPC of a PEMFC stack system with a popular industrial benchmark model in Simulink developed at Michigan University. The optimization algorithms for quadratic and non-linear system without and with constraints are presented and discussed for application purpose in the NMPC. Simulation results confirm the effectiveness of the developed model in both smooth tracking performance and less optimization time used. Conclusions and further work are given at the end of the thesis. Major contributions of the research have been outlined and achievements are checked against the objectives assigned. Further work is also suggested to extend the developed work to industrial applications in real-time simulation. This is to further examine the effectiveness of developed models. Extensive investigations are also recommended on the optimization problems to improve the existing algorithms

    Condition Monitoring of Wind Turbines Using Intelligent Machine Learning Techniques

    Get PDF
    Wind Turbine condition monitoring can detect anomalies in turbine performance which have the potential to result in unexpected failure and financial loss. This study examines common Supervisory Control And Data Acquisition (SCADA) data over a period of 20 months for 21 pitch regulated 2.3 MW turbines and is presented in three manuscripts. First, power curve monitoring is targeted applying various types of Artificial Neural Networks to increase modeling accuracy. It is shown how the proposed method can significantly improve network reliability compared with existing models. Then, an advance technique is utilized to create a smoother dataset for network training followed by establishing dynamic ANFIS network. At this stage, designed network aims to predict power generation in future hours. Finally, a recursive principal component analysis is performed to extract significant features to be used as input parameters of the network. A novel fusion technique is then employed to build an advanced model to make predictions of turbines performance with favorably low errors

    Brain-Computer Interfaces using Machine Learning

    Get PDF
    This thesis explores machine learning models for the analysis and classification of electroencephalographic (EEG) signals used in Brain-Computer Interface (BCI) systems. The goal is 1) to develop a system that allows users to control home-automation devices using their mind, and 2) to investigate whether it is possible to achieve this, using low-cost EEG equipment. The thesis includes both a theoretical and a practical part. In the theoretical part, we overview the underlying principles of Brain-Computer Interface systems, as well as, different approaches for the interpretation and the classification of brain signals. We also discuss the emergent launch of low-cost EEG equipment on the market and its use beyond clinical research. We then dive into more technical details that involve signal processing and classification of EEG patterns using machine leaning. Purpose of the practical part is to create a brain-computer interface that will be able to control a smart home environment. As a first step, we investigate the generalizability of different classification methods, conducting a preliminary study on two public datasets of brain encephalographic data. The obtained accuracy level of classification on 9 different subjects was similar and, in some cases, superior to the reported state of the art. Having achieved relatively good offline classification results during our study, we move on to the last part, designing and implementing an online BCI system using Python. Our system consists of three modules. The first module communicates with the MUSE (a low-cost EEG device) to acquire the EEG signals in real time, the second module process those signals using machine learning techniques and trains a learning model. The model is used by the third module, that takes control of cloud-based home automation devices. Experiments using the MUSE resulted in significantly lower classification results and revealed the limitations of the low-cost EEG signal acquisition device for online BCIs

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Generalised predictive current-mode control of passive front-end boost-type converters

    Get PDF
    In this work, an average current-mode control strategy based on a generalised predictive control formulation for passive front-end three-phase boost-type converters is proposed. A novel design procedure for the generalised predictive control strategy is introduced which considers both the cost function and disturbance model as design parameters to set the controller's dynamic response and robustness against component variations. A maximum robustness criterion was used for achieving stability up to a 70% inductance reduction with maximum possible bandwidth. The proposed strategy was compared against both a PI and a predictive deadbeat average current-mode control using both simulations and experimental results on a (Formula presented.) converter. The generalised predictive control presented less performance variations between different operating points than the PI controller. Also, the proposed strategy is more robust than the predictive deadbeat strategy, showing a better transient response with a 50% inductance reduction and remained stable for a 71% inductance reduction, while the predictive deadbeat could not. Finally, the proposed strategy achieved a 1.4% output voltage load transient response for a (Formula presented.) load power step, and a 2.8% output voltage line transient response for a (Formula presented.) input voltage step, outperforming existing state-of-the-art strategies.Fil: Judewicz, Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaFil: González, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaFil: Fischer, Jonatan Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaFil: Martínez, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaFil: Carrica, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentin
    corecore