308 research outputs found

    Faster Approximate Multicommodity Flow Using Quadratically Coupled Flows

    Get PDF
    The maximum multicommodity flow problem is a natural generalization of the maximum flow problem to route multiple distinct flows. Obtaining a 1ϵ1-\epsilon approximation to the multicommodity flow problem on graphs is a well-studied problem. In this paper we present an adaptation of recent advances in single-commodity flow algorithms to this problem. As the underlying linear systems in the electrical problems of multicommodity flow problems are no longer Laplacians, our approach is tailored to generate specialized systems which can be preconditioned and solved efficiently using Laplacians. Given an undirected graph with m edges and k commodities, we give algorithms that find 1ϵ1-\epsilon approximate solutions to the maximum concurrent flow problem and the maximum weighted multicommodity flow problem in time \tilde{O}(m^{4/3}\poly(k,\epsilon^{-1}))

    Navigating Central Path with Electrical Flows: from Flows to Matchings, and Back

    Full text link
    We present an O~(m10/7)=O~(m1.43)\tilde{O}(m^{10/7})=\tilde{O}(m^{1.43})-time algorithm for the maximum s-t flow and the minimum s-t cut problems in directed graphs with unit capacities. This is the first improvement over the sparse-graph case of the long-standing O(mmin(m,n2/3))O(m \min(\sqrt{m},n^{2/3})) time bound due to Even and Tarjan [EvenT75]. By well-known reductions, this also establishes an O~(m10/7)\tilde{O}(m^{10/7})-time algorithm for the maximum-cardinality bipartite matching problem. That, in turn, gives an improvement over the celebrated celebrated O(mn)O(m \sqrt{n}) time bound of Hopcroft and Karp [HK73] whenever the input graph is sufficiently sparse

    A nearly-mlogn time solver for SDD linear systems

    Full text link
    We present an improved algorithm for solving symmetrically diagonally dominant linear systems. On input of an n×nn\times n symmetric diagonally dominant matrix AA with mm non-zero entries and a vector bb such that Axˉ=bA\bar{x} = b for some (unknown) vector xˉ\bar{x}, our algorithm computes a vector xx such that xxˉA<ϵxˉA||{x}-\bar{x}||_A < \epsilon ||\bar{x}||_A {A||\cdot||_A denotes the A-norm} in time O~(mlognlog(1/ϵ)).{\tilde O}(m\log n \log (1/\epsilon)). The solver utilizes in a standard way a `preconditioning' chain of progressively sparser graphs. To claim the faster running time we make a two-fold improvement in the algorithm for constructing the chain. The new chain exploits previously unknown properties of the graph sparsification algorithm given in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger preconditioning properties. We also present an algorithm of independent interest that constructs nearly-tight low-stretch spanning trees in time O~(mlogn)\tilde{O}(m\log{n}), a factor of O(logn)O(\log{n}) faster than the algorithm in [Abraham,Bartal,Neiman, FOCS 2008]. This speedup directly reflects on the construction time of the preconditioning chain.Comment: to appear in FOCS1
    corecore