14,343 research outputs found

    Multiple Access Channels with Generalized Feedback and Confidential Messages

    Full text link
    This paper considers the problem of secret communication over a multiple access channel with generalized feedback. Two trusted users send independent confidential messages to an intended receiver, in the presence of a passive eavesdropper. In this setting, an active cooperation between two trusted users is enabled through using channel feedback in order to improve the communication efficiency. Based on rate-splitting and decode-and-forward strategies, achievable secrecy rate regions are derived for both discrete memoryless and Gaussian channels. Results show that channel feedback improves the achievable secrecy rates.Comment: To appear in the Proceedings of the 2007 IEEE Information Theory Workshop on Frontiers in Coding Theory, Lake Tahoe, CA, September 2-6, 200

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Compound Multiple Access Channel with Confidential Messages

    Full text link
    In this paper, we study the problem of secret communication over a Compound Multiple Access Channel (MAC). In this channel, we assume that one of the transmitted messages is confidential that is only decoded by its corresponding receiver and kept secret from the other receiver. For this proposed setting (compound MAC with confidential messages), we derive general inner and outer bounds on the secrecy capacity region. Also, as examples, we investigate 'Less noisy' and 'Gaussian' versions of this channel, and extend the results of the discrete memoryless version to these cases. Moreover, providing numerical examples for the Gaussian case, we illustrate the comparison between achievable rate regions of compound MAC and compound MAC with confidential messages.Comment: Accepted at IEEE ICC 2014. arXiv admin note: substantial text overlap with arXiv:1402.479
    • …
    corecore