58 research outputs found

    Learning in Congestion Games with Bandit Feedback

    Full text link
    In this paper, we investigate Nash-regret minimization in congestion games, a class of games with benign theoretical structure and broad real-world applications. We first propose a centralized algorithm based on the optimism in the face of uncertainty principle for congestion games with (semi-)bandit feedback, and obtain finite-sample guarantees. Then we propose a decentralized algorithm via a novel combination of the Frank-Wolfe method and G-optimal design. By exploiting the structure of the congestion game, we show the sample complexity of both algorithms depends only polynomially on the number of players and the number of facilities, but not the size of the action set, which can be exponentially large in terms of the number of facilities. We further define a new problem class, Markov congestion games, which allows us to model the non-stationarity in congestion games. We propose a centralized algorithm for Markov congestion games, whose sample complexity again has only polynomial dependence on all relevant problem parameters, but not the size of the action set.Comment: 34 pages, Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022

    Conditional Gradient Methods

    Full text link
    The purpose of this survey is to serve both as a gentle introduction and a coherent overview of state-of-the-art Frank--Wolfe algorithms, also called conditional gradient algorithms, for function minimization. These algorithms are especially useful in convex optimization when linear optimization is cheaper than projections. The selection of the material has been guided by the principle of highlighting crucial ideas as well as presenting new approaches that we believe might become important in the future, with ample citations even of old works imperative in the development of newer methods. Yet, our selection is sometimes biased, and need not reflect consensus of the research community, and we have certainly missed recent important contributions. After all the research area of Frank--Wolfe is very active, making it a moving target. We apologize sincerely in advance for any such distortions and we fully acknowledge: We stand on the shoulder of giants.Comment: 238 pages with many figures. The FrankWolfe.jl Julia package (https://github.com/ZIB-IOL/FrankWolfe.jl) providces state-of-the-art implementations of many Frank--Wolfe method

    Large-Scale Intelligent Systems: From Network Dynamics to Optimization Algorithms

    Get PDF
    The expansion of large-scale technological systems such as electrical grids, transportation networks, health care systems, telecommunication networks, the Internet (of things), and other societal networks has created numerous challenges and opportunities at the same time. These systems are often not yet as robust, efficient, sustainable, or smart as we would want them to be. Fueled by the massive amounts of data generated by all these systems, and with the recent advances in making sense out of data, there is a strong desire to make them more intelligent. However, developing large-scale intelligent systems is a multifaceted problem, involving several major challenges. First, large-scale systems typically exhibit complex dynamics due to the large number of entities interacting over a network. Second, because the system is composed of many interacting entities, that make decentralized (and often self-interested) decisions, one has to properly design incentives and markets for such systems. Third, the massive computational needs caused by the scale of the system necessitate performing computations in a distributed fashion, which in turn requires devising new algorithms. Finally, one has to create algorithms that can learn from the copious amounts of data and generalize well. This thesis makes several contributions related to each of these four challenges. Analyzing and understanding the network dynamics exhibited in societal systems is crucial for developing systems that are robust and efficient. In Part I of this thesis, we study one of the most important families of network dynamics, namely, that of epidemics, or spreading processes. Studying such processes is relevant for understanding and controlling the spread of, e.g., contagious diseases among people, ideas or fake news in online social networks, computer viruses in computer networks, or cascading failures in societal networks. We establish several results on the exact Markov chain model and the nonlinear "mean-field" approximations for various kinds of epidemics (i.e., SIS, SIRS, SEIRS, SIV, SEIV, and their variants). Designing incentives and markets for large-scale systems is critical for their efficient operation and ensuring an alignment between the agents' decentralized decisions and the global goals of the system. To that end, in Part II of this thesis, we study these issues in markets with non-convex costs as well as networked markets, which are of vital importance for, e.g., the smart grid. We propose novel pricing schemes for such markets, which satisfy all the desired market properties. We also reveal issues in the current incentives for distributed energy resources, such as renewables, and design optimization algorithms for efficient management of aggregators of such resources. With the growing amounts of data generated by large-scale systems, and the fact that the data may already be dispersed across many units, it is becoming increasingly necessary to run computational tasks in a distributed fashion. Part III concerns developing algorithms for distributed computation. We propose a novel consensus-based algorithm for the task of solving large-scale systems of linear equations, which is one of the most fundamental problems in linear algebra, and a key step at the heart of many algorithms in scientific computing, machine learning, and beyond. In addition, in order to deal with the issue of heterogeneous delays in distributed computation, caused by slow machines, we develop a new coded computation technique. In both cases, the proposed methods offer significant speed-ups relative to the existing approaches. Over the past decade, deep learning methods have become the most successful learning algorithms in a wide variety of tasks. However, the reasons behind their success (as well as their failures in some respects) are largely unexplained. It is widely believed that the success of deep learning is not just due to the deep architecture of the models, but also due to the behavior of the optimization algorithms, such as stochastic gradient descent (SGD), used for training them. In Part IV of this thesis, we characterize several properties, such as minimax optimality and implicit regularization, of SGD, and more generally, of the family of stochastic mirror descent (SMD). While SGD performs an implicit regularization, this regularization can be effectively controlled using SMD with a proper choice of mirror, which in turn can improve the generalization error.</p

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Increasing Access to Natural Areas: Connecting Physical and Social Dimensions

    Get PDF
    Report of the 2015 Berkley Workshop Held at the Asticou Inn, Northeast Harbor, Maine - July 201

    Aeronautical engineering, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 823 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1984
    • …
    corecore