6,670 research outputs found

    Generalized Look-Ahead Methods for Computing Stationary Densities

    Get PDF
    The look-ahead estimator is used to compute densities associated with Markov processes via simulation. We study a framework that extends the look-ahead estimator to a much broader range of applications. We provide a general asymptotic theory for the estimator, where both L1 consistency and L2 asymptotic normality are established.

    "Computing Densities and Expectations in Stochastic Recursive Economies: Generalized Look-Ahead Techniques"

    Get PDF
    We propose a generalized look-ahead estimator for computing densities and expectations in economic models. We provide conditions under which the estimator converges globally with probability one, and exhibit the asymptotic distribution of the error. Our estimator is more efficient than other Monte Carlo based approaches. Numerical experiments indicate that the estimator can provide large increases in accuracy and speed relative to traditional methods. Particular applications we consider are the stochastic growth model and an income fluctuation problem.

    Statistical Physics of Vehicular Traffic and Some Related Systems

    Full text link
    In the so-called "microscopic" models of vehicular traffic, attention is paid explicitly to each individual vehicle each of which is represented by a "particle"; the nature of the "interactions" among these particles is determined by the way the vehicles influence each others' movement. Therefore, vehicular traffic, modeled as a system of interacting "particles" driven far from equilibrium, offers the possibility to study various fundamental aspects of truly nonequilibrium systems which are of current interest in statistical physics. Analytical as well as numerical techniques of statistical physics are being used to study these models to understand rich variety of physical phenomena exhibited by vehicular traffic. Some of these phenomena, observed in vehicular traffic under different circumstances, include transitions from one dynamical phase to another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. In this critical review, written from the perspective of statistical physics, we explain the guiding principles behind all the main theoretical approaches. But we present detailed discussions on the results obtained mainly from the so-called "particle-hopping" models, particularly emphasizing those which have been formulated in recent years using the language of cellular automata.Comment: 170 pages, Latex, figures include

    25 Years of IIF Time Series Forecasting: A Selective Review

    Get PDF
    We review the past 25 years of time series research that has been published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985; International Journal of Forecasting 1985-2005). During this period, over one third of all papers published in these journals concerned time series forecasting. We also review highly influential works on time series forecasting that have been published elsewhere during this period. Enormous progress has been made in many areas, but we find that there are a large number of topics in need of further development. We conclude with comments on possible future research directions in this field.Accuracy measures; ARCH model; ARIMA model; Combining; Count data; Densities; Exponential smoothing; Kalman Filter; Long memory; Multivariate; Neural nets; Nonlinearity; Prediction intervals; Regime switching models; Robustness; Seasonality; State space; Structural models; Transfer function; Univariate; VAR.

    Using wavelets for time series forecasting: Does it pay off?

    Get PDF
    By means of wavelet transform a time series can be decomposed into a time dependent sum of frequency components. As a result we are able to capture seasonalities with time-varying period and intensity, which nourishes the belief that incorporating the wavelet transform in existing forecasting methods can improve their quality. The article aims to verify this by comparing the power of classical and wavelet based techniques on the basis of four time series, each of them having individual characteristics. We find that wavelets do improve the forecasting quality. Depending on the data's characteristics and on the forecasting horizon we either favour a denoising step plus an ARIMA forecast or an multiscale wavelet decomposition plus an ARIMA forecast for each of the frequency components. --Forecasting,Wavelets,ARIMA,Denoising,Multiscale Analysis
    • ā€¦
    corecore