19,858 research outputs found

    Joint Head Selection and Airtime Allocation for Data Dissemination in Mobile Social Networks

    Full text link
    Mobile social networks (MSNs) enable people with similar interests to interact without Internet access. By forming a temporary group, users can disseminate their data to other interested users in proximity with short-range communication technologies. However, due to user mobility, airtime available for users in the same group to disseminate data is limited. In addition, for practical consideration, a star network topology among users in the group is expected. For the former, unfair airtime allocation among the users will undermine their willingness to participate in MSNs. For the latter, a group head is required to connect other users. These two problems have to be properly addressed to enable real implementation and adoption of MSNs. To this aim, we propose a Nash bargaining-based joint head selection and airtime allocation scheme for data dissemination within the group. Specifically, the bargaining game of joint head selection and airtime allocation is first formulated. Then, Nash bargaining solution (NBS) based optimization problems are proposed for a homogeneous case and a more general heterogeneous case. For both cases, the existence of solution to the optimization problem is proved, which guarantees Pareto optimality and proportional fairness. Next, an algorithm, allowing distributed implementation, for join head selection and airtime allocation is introduced. Finally, numerical results are presented to evaluate the performance, validate intuitions and derive insights of the proposed scheme

    A Case for Cooperative and Incentive-Based Coupling of Distributed Clusters

    Full text link
    Research interest in Grid computing has grown significantly over the past five years. Management of distributed resources is one of the key issues in Grid computing. Central to management of resources is the effectiveness of resource allocation as it determines the overall utility of the system. The current approaches to superscheduling in a grid environment are non-coordinated since application level schedulers or brokers make scheduling decisions independently of the others in the system. Clearly, this can exacerbate the load sharing and utilization problems of distributed resources due to suboptimal schedules that are likely to occur. To overcome these limitations, we propose a mechanism for coordinated sharing of distributed clusters based on computational economy. The resulting environment, called \emph{Grid-Federation}, allows the transparent use of resources from the federation when local resources are insufficient to meet its users' requirements. The use of computational economy methodology in coordinating resource allocation not only facilitates the QoS based scheduling, but also enhances utility delivered by resources.Comment: 22 pages, extended version of the conference paper published at IEEE Cluster'05, Boston, M

    Modeling and Evaluation of Multisource Streaming Strategies in P2P VoD Systems

    Get PDF
    In recent years, multimedia content distribution has largely been moved to the Internet, inducing broadcasters, operators and service providers to upgrade with large expenses their infrastructures. In this context, streaming solutions that rely on user devices such as set-top boxes (STBs) to offload dedicated streaming servers are particularly appropriate. In these systems, contents are usually replicated and scattered over the network established by STBs placed at users' home, and the video-on-demand (VoD) service is provisioned through streaming sessions established among neighboring STBs following a Peer-to-Peer fashion. Up to now the majority of research works have focused on the design and optimization of content replicas mechanisms to minimize server costs. The optimization of replicas mechanisms has been typically performed either considering very crude system performance indicators or analyzing asymptotic behavior. In this work, instead, we propose an analytical model that complements previous works providing fairly accurate predictions of system performance (i.e., blocking probability). Our model turns out to be a highly scalable, flexible, and extensible tool that may be helpful both for designers and developers to efficiently predict the effect of system design choices in large scale STB-VoD system

    Performance analysis of downlink shared channels in a UMTS network

    Get PDF
    In light of the expected growth in wireless data communications and the commonly anticipated up/downlink asymmetry, we present a performance analysis of downlink data transfer over \textsc{d}ownlink \textsc{s}hared \textsc{ch}annels (\textsc{dsch}s), arguably the most efficient \textsc{umts} transport channel for medium-to-large data transfers. It is our objective to provide qualitative insight in the different aspects that influence the data \textsc{q}uality \textsc{o}f \textsc{s}ervice (\textsc{qos}). As a most principal factor, the data traffic load affects the data \textsc{qos} in two distinct manners: {\em (i)} a heavier data traffic load implies a greater competition for \textsc{dsch} resources and thus longer transfer delays; and {\em (ii)} since each data call served on a \textsc{dsch} must maintain an \textsc{a}ssociated \textsc{d}edicated \textsc{ch}annel (\textsc{a}-\textsc{dch}) for signalling purposes, a heavier data traffic load implies a higher interference level, a higher frame error rate and thus a lower effective aggregate \textsc{dsch} throughput: {\em the greater the demand for service, the smaller the aggregate service capacity.} The latter effect is further amplified in a multicellular scenario, where a \textsc{dsch} experiences additional interference from the \textsc{dsch}s and \textsc{a}-\textsc{dch}s in surrounding cells, causing a further degradation of its effective throughput. Following an insightful two-stage performance evaluation approach, which segregates the interference aspects from the traffic dynamics, a set of numerical experiments is executed in order to demonstrate these effects and obtain qualitative insight in the impact of various system aspects on the data \textsc{qos}
    • 

    corecore