971 research outputs found

    Optimal Row-Column Designs for Correlated Errors and Nested Row-Column Designs for Uncorrelated Errors

    Get PDF
    In this dissertation the design problems are considered in the row-column setting for second order autonormal errors when the treatment effects are estimated by generalized least squares, and in the nested row-column setting for uncorrelated errors when the treatment effects are estimated by ordinary least squares. In the former case, universal optimality conditions are derived separately for designs in the plane and on the torus using more general linear models than those considered elsewhere in the literature. Examples of universally optimum planar designs are given, and a method is developed for the construction of optimum and near optimum designs, that produces several infinite series of universally optimum designs on the torus and near optimum designs in the plane. Efficiencies are calculated for planar versions of the torus designs, which are found to be highly efficient with respect to some commonly used optimality criterion. In the nested row-column setting, several methods of construction of balanced and partially balanced incomplete block designs with nested rows and columns are developed, from which many infinite series of designs are obtained. In particular, 149 balanced incomplete block designs with nested rows and columns are listed (80 appear to be new) for the number of treatments, v \u3c 101, a prime power

    Angled decompositions of arborescent link complements

    Full text link
    This paper describes a way to subdivide a 3-manifold into angled blocks, namely polyhedral pieces that need not be simply connected. When the individual blocks carry dihedral angles that fit together in a consistent fashion, we prove that a manifold constructed from these blocks must be hyperbolic. The main application is a new proof of a classical, unpublished theorem of Bonahon and Siebenmann: that all arborescent links, except for three simple families of exceptions, have hyperbolic complements.Comment: 42 pages, 23 figures. Slightly expanded exposition and reference

    Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations

    Full text link
    We introduce a new method, the Local Monge Parametrizations (LMP) method, to approximate tensor fields on general surfaces given by a collection of local parametrizations, e.g.~as in finite element or NURBS surface representations. Our goal is to use this method to solve numerically tensor-valued partial differential equations (PDE) on surfaces. Previous methods use scalar potentials to numerically describe vector fields on surfaces, at the expense of requiring higher-order derivatives of the approximated fields and limited to simply connected surfaces, or represent tangential tensor fields as tensor fields in 3D subjected to constraints, thus increasing the essential number of degrees of freedom. In contrast, the LMP method uses an optimal number of degrees of freedom to represent a tensor, is general with regards to the topology of the surface, and does not increase the order of the PDEs governing the tensor fields. The main idea is to construct maps between the element parametrizations and a local Monge parametrization around each node. We test the LMP method by approximating in a least-squares sense different vector and tensor fields on simply connected and genus-1 surfaces. Furthermore, we apply the LMP method to two physical models on surfaces, involving a tension-driven flow (vector-valued PDE) and nematic ordering (tensor-valued PDE). The LMP method thus solves the long-standing problem of the interpolation of tensors on general surfaces with an optimal number of degrees of freedom.Comment: 16 pages, 6 figure

    Morita Duality and Noncommutative Wilson Loops in Two Dimensions

    Full text link
    We describe a combinatorial approach to the analysis of the shape and orientation dependence of Wilson loop observables on two-dimensional noncommutative tori. Morita equivalence is used to map the computation of loop correlators onto the combinatorics of non-planar graphs. Several nonperturbative examples of symmetry breaking under area-preserving diffeomorphisms are thereby presented. Analytic expressions for correlators of Wilson loops with infinite winding number are also derived and shown to agree with results from ordinary Yang-Mills theory.Comment: 32 pages, 9 figures; v2: clarifying comments added; Final version to be published in JHE

    Surprising applications and possible extensions of Dellsarte's method

    Get PDF
    Paper presented at Strathmore International Math Research Conference on July 23 - 27, 2012This is a short informal survey on some surprising applications of Delsarte's method, written for anyone being interested. I try to keep it as short and as informative as possibleThis is a short informal survey on some surprising applications of Delsarte's method, written for anyone being interested. I try to keep it as short and as informative as possibl

    Sudoku Variants on the Torus

    Get PDF
    This paper examines the mathematical properties of Sudoku puzzles defined on a Torus. We seek to answer the questions for these variants that have been explored for the traditional Sudoku. We do this process with two such embeddings. The end result of this paper is a deeper mathematical understanding of logic puzzles of this type, as well as a fun new puzzle which could be played

    Uniform Mixing and Association Schemes

    Full text link
    We consider continuous-time quantum walks on distance-regular graphs of small diameter. Using results about the existence of complex Hadamard matrices in association schemes, we determine which of these graphs have quantum walks that admit uniform mixing. First we apply a result due to Chan to show that the only strongly regular graphs that admit instantaneous uniform mixing are the Paley graph of order nine and certain graphs corresponding to regular symmetric Hadamard matrices with constant diagonal. Next we prove that if uniform mixing occurs on a bipartite graph X with n vertices, then n is divisible by four. We also prove that if X is bipartite and regular, then n is the sum of two integer squares. Our work on bipartite graphs implies that uniform mixing does not occur on C_{2m} for m >= 3. Using a result of Haagerup, we show that uniform mixing does not occur on C_p for any prime p such that p >= 5. In contrast to this result, we see that epsilon-uniform mixing occurs on C_p for all primes p.Comment: 23 page

    Conformal entropy from horizon states: Solodukhin's method for spherical, toroidal, and hyperbolic black holes in D-dimensional anti-de Sitter spacetimes

    Full text link
    A calculation of the entropy of static, electrically charged, black holes with spherical, toroidal, and hyperbolic compact and oriented horizons, in D spacetime dimensions, is performed. These black holes live in an anti-de Sitter spacetime, i.e., a spacetime with negative cosmological constant. To find the entropy, the approach developed by Solodukhin is followed. The method consists in a redefinition of the variables in the metric, by considering the radial coordinate as a scalar field. Then one performs a 2+(D-2) dimensional reduction, where the (D-2) dimensions are in the angular coordinates, obtaining a 2-dimensional effective scalar field theory. This theory is a conformal theory in an infinitesimally small vicinity of the horizon. The corresponding conformal symmetry will then have conserved charges, associated with its infinitesimal conformal generators, which will generate a classical Poisson algebra of the Virasoro type. Shifting the charges and replacing Poisson brackets by commutators, one recovers the usual form of the Virasoro algebra, obtaining thus the level zero conserved charge eigenvalue L_0, and a nonzero central charge c. The entropy is then obtained via the Cardy formula.Comment: 21 page
    • …
    corecore