31,842 research outputs found

    Entanglement and quantum combinatorial designs

    Full text link
    We introduce several classes of quantum combinatorial designs, namely quantum Latin squares, cubes, hypercubes and a notion of orthogonality between them. A further introduced notion, quantum orthogonal arrays, generalizes all previous classes of designs. We show that mutually orthogonal quantum Latin arrangements can be entangled in the same way than quantum states are entangled. Furthermore, we show that such designs naturally define a remarkable class of genuinely multipartite highly entangled states called kk-uniform, i.e. multipartite pure states such that every reduction to kk parties is maximally mixed. We derive infinitely many classes of mutually orthogonal quantum Latin arrangements and quantum orthogonal arrays having an arbitrary large number of columns. The corresponding multipartite kk-uniform states exhibit a high persistency of entanglement, which makes them ideal candidates to develop multipartite quantum information protocols.Comment: 14 pages, 3 figures. Comments are very welcome

    Entropic uncertainty relations and locking: tight bounds for mutually unbiased bases

    Full text link
    We prove tight entropic uncertainty relations for a large number of mutually unbiased measurements. In particular, we show that a bound derived from the result by Maassen and Uffink for 2 such measurements can in fact be tight for up to sqrt{d} measurements in mutually unbiased bases. We then show that using more mutually unbiased bases does not always lead to a better locking effect. We prove that the optimal bound for the accessible information using up to sqrt{d} specific mutually unbiased bases is log d/2, which is the same as can be achieved by using only two bases. Our result indicates that merely using mutually unbiased bases is not sufficient to achieve a strong locking effect, and we need to look for additional properties.Comment: 9 pages, RevTeX, v3: complete rewrite, new title, many new results, v4: minor changes, published versio

    Low-Density Parity-Check Codes From Transversal Designs With Improved Stopping Set Distributions

    Full text link
    This paper examines the construction of low-density parity-check (LDPC) codes from transversal designs based on sets of mutually orthogonal Latin squares (MOLS). By transferring the concept of configurations in combinatorial designs to the level of Latin squares, we thoroughly investigate the occurrence and avoidance of stopping sets for the arising codes. Stopping sets are known to determine the decoding performance over the binary erasure channel and should be avoided for small sizes. Based on large sets of simple-structured MOLS, we derive powerful constraints for the choice of suitable subsets, leading to improved stopping set distributions for the corresponding codes. We focus on LDPC codes with column weight 4, but the results are also applicable for the construction of codes with higher column weights. Finally, we show that a subclass of the presented codes has quasi-cyclic structure which allows low-complexity encoding.Comment: 11 pages; to appear in "IEEE Transactions on Communications
    corecore