15 research outputs found

    On the semi-local convergence of a sixth order method in Banach space

    Get PDF
    High convergence order methods are important in computational mathematics, since they generate sequences converging to a solution of a non-linear equation. The derivation of the order requires Taylor series expansions and the existence of derivatives not appearing on the method. Therefore, these results cannot assure the convergence of the method in those cases when such high order derivatives do not exist. But, the method may converge. In this article, a process is introduced by which the semi-local convergence analysis of a sixth order method is obtained using only information from the operators on the method. Numerical examples are included to complement the theory

    Estudio sobre convergencia y dinámica de los métodos de Newton, Stirling y alto orden

    Get PDF
    Las matemáticas, desde el origen de esta ciencia, han estado al servicio de la sociedad tratando de dar respuesta a los problemas que surgían. Hoy en día sigue siendo así, el desarrollo de las matemáticas está ligado a la demanda de otras ciencias que necesitan dar solución a situaciones concretas y reales. La mayoría de los problemas de ciencia e ingeniería no pueden resolverse usando ecuaciones lineales, es por tanto que hay que recurrir a las ecuaciones no lineales para modelizar dichos problemas (Amat, 2008; véase también Argyros y Magreñán, 2017, 2018), entre otros. El conflicto que presentan las ecuaciones no lineales es que solo en unos pocos casos es posible encontrar una solución única, por tanto, en la mayor parte de los casos, para resolverlas hay que recurrir a los métodos iterativos. Los métodos iterativos generan, a partir de un punto inicial, una sucesión que puede converger o no a la solución

    Numerical iterative methods for nonlinear problems.

    Get PDF
    The primary focus of research in this thesis is to address the construction of iterative methods for nonlinear problems coming from different disciplines. The present manuscript sheds light on the development of iterative schemes for scalar nonlinear equations, for computing the generalized inverse of a matrix, for general classes of systems of nonlinear equations and specific systems of nonlinear equations associated with ordinary and partial differential equations. Our treatment of the considered iterative schemes consists of two parts: in the first called the ’construction part’ we define the solution method; in the second part we establish the proof of local convergence and we derive convergence-order, by using symbolic algebra tools. The quantitative measure in terms of floating-point operations and the quality of the computed solution, when real nonlinear problems are considered, provide the efficiency comparison among the proposed and the existing iterative schemes. In the case of systems of nonlinear equations, the multi-step extensions are formed in such a way that very economical iterative methods are provided, from a computational viewpoint. Especially in the multi-step versions of an iterative method for systems of nonlinear equations, the Jacobians inverses are avoided which make the iterative process computationally very fast. When considering special systems of nonlinear equations associated with ordinary and partial differential equations, we can use higher-order Frechet derivatives thanks to the special type of nonlinearity: from a computational viewpoint such an approach has to be avoided in the case of general systems of nonlinear equations due to the high computational cost. Aside from nonlinear equations, an efficient matrix iteration method is developed and implemented for the calculation of weighted Moore-Penrose inverse. Finally, a variety of nonlinear problems have been numerically tested in order to show the correctness and the computational efficiency of our developed iterative algorithms

    A family of iterative methods that uses divided differences of first and second orders

    Get PDF
    The family of fourth-order Steffensen-type methods proposed by Zheng et al. (Appl. Math. Comput. 217, 9592-9597 (2011)) is extended to solve systems of nonlinear equations. This extension uses multidimensional divided differences of first and second orders. For a certain computational efficiency index, two optimal methods are identified in the family. Semilocal convergence is shown for one of these optimal methods under mild conditions. Moreover, a numerical example is given to illustrate the theoretical results.Peer ReviewedPostprint (author's final draft

    Symmetry in Applied Mathematics

    Get PDF
    Applied mathematics and symmetry work together as a powerful tool for problem reduction and solving. We are communicating applications in probability theory and statistics (A Test Detecting the Outliers for Continuous Distributions Based on the Cumulative Distribution Function of the Data Being Tested, The Asymmetric Alpha-Power Skew-t Distribution), fractals - geometry and alike (Khovanov Homology of Three-Strand Braid Links, Volume Preserving Maps Between p-Balls, Generation of Julia and Mandelbrot Sets via Fixed Points), supersymmetry - physics, nanostructures -chemistry, taxonomy - biology and alike (A Continuous Coordinate System for the Plane by Triangular Symmetry, One-Dimensional Optimal System for 2D Rotating Ideal Gas, Minimal Energy Configurations of Finite Molecular Arrays, Noether-Like Operators and First Integrals for Generalized Systems of Lane-Emden Equations), algorithms, programs and software analysis (Algorithm for Neutrosophic Soft Sets in Stochastic Multi-Criteria Group Decision Making Based on Prospect Theory, On a Reduced Cost Higher Order Traub-Steffensen-Like Method for Nonlinear Systems, On a Class of Optimal Fourth Order Multiple Root Solvers without Using Derivatives) to specific subjects (Facility Location Problem Approach for Distributed Drones, Parametric Jensen-Shannon Statistical Complexity and Its Applications on Full-Scale Compartment Fire Data). Diverse topics are thus combined to map out the mathematical core of practical problems

    Computing Limit Points of Quasi-components of Regular Chains and its Applications

    Get PDF
    Computing limit is a fundamental task in mathematics and different mathematical concepts are defined in terms of limit computations. Among these mathematical concepts, we are interested in three different types of limit computations: first, computing the limit points of solutions of polynomial systems represented by regular chains, second, computing tangent cones of space curves at their singular points which can be viewed as computing limit of secant lines, and third, computing the limit of real multivariate rational functions. For computing the limit of solutions of polynomial systems represented by regular chains, we present two different methods based on Puiseux series expansions and linear changes of coordinates. The first method, which is based on Puiseux series expansions, addresses the problem of computing real and complex limit points corresponding to regular chains of dimension one. The second method studies regular chains under changes of coordinates. It especially computes the limit points corresponding to regular chains of dimension higher than one for some cases. we consider strategies where these changes of coordinates can be either generic or guided by the input. For computing the Puiseux parametrizations corresponding to regular chains of dimension one, we rely on extended Hensel construction (EHC). The Extended Hensel Construction is a procedure which, for an input bivariate polynomial with complex coefficients, can serve the same purpose as the Newton-Puiseux algorithm, and, for the multivariate case, can be seen as an effective variant of Jung-Abhyankar Theorem. We show that the EHC requires only linear algebra and univariate polynomial arithmetic. We deduce complexity estimates and report on a software implementation together with experimental results. We also outline a method for computing the tangent cone of a space curve at any of its points. We rely on the theory of regular chains and Puiseux series expansions. Our approach is novel in that it explicitly constructs the tangent cone at arbitrary and possibly irrational points without using a Standard basis. We also present an algorithm for determining the existence of the limit of a real multivariate rational function q at a given point which is an isolated zero of the denominator of q. When the limit exists, the algorithm computes it, without making any assumption on the number of variables. A process, which extends the work of Cadavid, Molina and V´elez, reduces the multivariate setting to computing limits of bivariate rational functions. By using regular chain theory and triangular decomposition of semi-algebraic systems, we avoid the computation of singular loci and the decomposition of algebraic sets into irreducible components

    Equations and systems of nonlinear equations: from high order numerical methods to fast Eigensolvers for structured matrices and applications

    Get PDF
    A parametrized multi-step Newton method is constructed for widening the region of convergence of classical multi-step Newton method. The second improvement is proposed in the context of multistep Newton methods, by introducing preconditioners to enhance their accuracy, without disturbing their original order of convergence and the related computational cost (in most of the cases). To find roots with unknown multiplicities preconditioners are also effective when they are applied to the Newton method for roots with unknown multiplicities. Frozen Jacobian higher order multistep iterative method for the solution of systems of nonlinear equations are developed and the related results better than those obtained when employing the classical frozen Jacobian multi-step Newton method. To get benefit from the past information that is produced by the iterative method, we constructed iterative methods with memory for solving systems of nonlinear equations. Iterative methods with memory have a greater rate of convergence, if compared with the iterative method without memory. In terms of computational cost, iterative methods with memory are marginally superior comparatively. Numerical methods are also introduced for approximating all the eigenvalues of banded symmetric Toeplitz and preconditioned Toeplitz matrices. Our proposed numerical methods work very efficiently, when the generating symbols of the considered Toeplitz matrices are bijective
    corecore