2,834 research outputs found

    Automated 3D object modeling from aerial video imagery

    Get PDF
    Research in physically accurate 3D modeling of a scene is gaining momentum because of its far reaching applications in civilian and defense sectors. The modeled 3D scene must conform both geometrically and spectrally to the real world for all the applications. Geometric modeling of a scene can be achieved in many ways of which the two most popular methods are - a) using multiple 2D passive images of the scene also called as stereo vision and b) using 3D point clouds like Lidar (Light detection and ranging) data. In this research work, we derive the 3D models of objects in a scene using passive aerial video imagery. At present, this geometric modeling requires a lot of manual intervention due to a variety of factors like sensor noise, low contrast conditions during image capture, etc. Hence long time periods, in the order of weeks and months, are required to model even a small scene. This thesis focuses on automating the process of geometric modeling of objects in a scene from passive aerial video imagery. The aerial video frames are stitched into stereo mosaics. These stereo mosaics not only provide the elevation information of a scene but also act as good 3D visualization tools. The 3D information obtained from the stereo mosaics is used to identify the various 3D objects, especially man-made buildings using probabilistic inference provided by Bayesian Networks. The initial 3D building models are further optimized by projecting them on to the individual video frames. The limitations of the state-of-art technology in attaining these goals are presented along with the techniques to overcome them. The improvement that can be achieved in the accuracy of the 3D models when Lidar data is fused with aerial video during the object identification process is also examined

    Factorizing LambdaMART for cold start recommendations

    Full text link
    Recommendation systems often rely on point-wise loss metrics such as the mean squared error. However, in real recommendation settings only few items are presented to a user. This observation has recently encouraged the use of rank-based metrics. LambdaMART is the state-of-the-art algorithm in learning to rank which relies on such a metric. Despite its success it does not have a principled regularization mechanism relying in empirical approaches to control model complexity leaving it thus prone to overfitting. Motivated by the fact that very often the users' and items' descriptions as well as the preference behavior can be well summarized by a small number of hidden factors, we propose a novel algorithm, LambdaMART Matrix Factorization (LambdaMART-MF), that learns a low rank latent representation of users and items using gradient boosted trees. The algorithm factorizes lambdaMART by defining relevance scores as the inner product of the learned representations of the users and items. The low rank is essentially a model complexity controller; on top of it we propose additional regularizers to constraint the learned latent representations that reflect the user and item manifolds as these are defined by their original feature based descriptors and the preference behavior. Finally we also propose to use a weighted variant of NDCG to reduce the penalty for similar items with large rating discrepancy. We experiment on two very different recommendation datasets, meta-mining and movies-users, and evaluate the performance of LambdaMART-MF, with and without regularization, in the cold start setting as well as in the simpler matrix completion setting. In both cases it outperforms in a significant manner current state of the art algorithms
    corecore