1,086 research outputs found

    Texture Synthesis for Mobile Data Communications

    Get PDF
    A digital camera mounted on a mobile phone is utilized as a data input device to obtain embedded data by analyzing the pattern of an image code such as a 2D bar code. This article proposes a new type of image coding method using texture image synthesis. Regularly arranged dotted-pattern is first painted with colors picked out from a texture sample, for having features corresponding to embedded data. Our texture synthesis technique then camouflages the dotted-patternusing the same texture sample while preserving the qualitycomparable to that of existing synthesis techniques. The texturedcode provides the conventional bar code with an aesthetic appealand is used for tagging data onto real texture objects, which canform a basis for ubiquitous mobile data communications. Thistechnical approach has the potential to explore new applicationfields of example-based, computer-generated texture images

    Radio Frequency Based Programmable Logic Controller Anomaly Detection

    Get PDF
    The research goal involved developing improved methods for securing Programmable Logic Controller (PLC) devices against unauthorized entry and mitigating the risk of Supervisory Control and Data Acquisition (SCADA) attack by detecting malicious software and/or trojan hardware. A Correlation Based Anomaly Detection (CBAD) process was developed to enable 1) software anomaly detection discriminating between various operating conditions to detect malfunctioning or malicious software, firmware, etc., and 2) hardware component discrimination discriminating between various hardware components to detect malfunctioning or counterfeit, trojan, etc., components

    Mathematics and Algorithms in Tomography

    Get PDF
    This was the ninth Oberwolfach conference on the mathematics of tomography. Modalities represented at the workshop included X-ray tomography, radar, seismic imaging, ultrasound, electron microscopy, impedance imaging, photoacoustic tomography, elastography, emission tomography, X-ray CT, and vector tomography along with a wide range of mathematical analysis

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    White matter changes measured by multi-component MR Fingerprinting in multiple sclerosis

    Get PDF
    T2-hyperintense lesions are the key imaging marker of multiple sclerosis (MS). Previous studies have shown that the white matter surrounding such lesions is often also affected by MS. Our aim was to develop a new method to visualize and quantify the extent of white matter tissue changes in MS based on relaxometry properties. We applied a fast, multi-parametric quantitative MRI approach and used a multi-component MR Fingerprinting (MC-MRF) analysis. We assessed the differences in the MRF component representing prolongedrelaxation time between patients with MS and controls and studied the relation between this component's volume and structural white matter damage identified on FLAIR MRI scans in patients with MS. A total of 48 MS patients at two different sites and 12 healthy controls were scanned with FLAIR and MRF-EPI MRI scans. MRF scans were analyzed with a joint-sparsity multi-component analysis to obtain magnetization fraction maps of different components, representing tissues such as myelin water, white matter, gray matter and cerebrospinal fluid. In the MS patients, an additional component was identified with increased transverse relaxation times compared to the white matter, likely representing changes in free water content. Patients with MS had a higher volume of the long- component in the white matter of the brain compared to healthy controls (B (95%-CI) = 0.004 (0.0006–0.008), p = 0.02). Furthermore, this MRF component had a moderate correlation (correlation coefficient R 0.47) with visible structural white matter changes on the FLAIR scans. Also, the component was found to be more extensive compared to structural white matter changes in 73% of MS patients. In conclusion, our MRF acquisition and analysis captured white matter tissue changes in MS patients compared to controls. In patients these tissue changes were more extensive compared to visually detectable white matter changes on FLAIR scans. Our method provides a novel way to quantify the extent of white matter changes in MS patients, which is underestimated using only conventional clinical MRI scans.</p

    Optimisation of surface coverage paths used by a non-contact robot painting system

    Get PDF
    This thesis proposes an efficient path planning technique for a non-contact optical “painting” system that produces surface images by moving a robot mounted laser across objects covered in photographic emulsion. In comparison to traditional 3D planning approaches (e.g. laminar slicing) the proposed algorithm dramatically reduces the overall path length by optimizing (i.e. minimizing) the amounts of movement between robot configurations required to position and orientate the laser. To do this the pixels of the image (i.e. points on the surface of the object) are sequenced using configuration space rather than Cartesian space. This technique extracts data from a CAD model and then calculates the configuration that the five degrees of freedom system needs to assume to expose individual pixels on the surface. The system then uses a closest point analysis on all the major joints to sequence the points and create an efficient path plan for the component. The implementation and testing of the algorithm demonstrates that sequencing points using a configuration based method tends to produce significantly shorter paths than other approaches to the sequencing problem. The path planner was tested with components ranging from simple to complex and the paths generated demonstrated both the versatility and feasibility of the approach

    Automated framework for robust content-based verification of print-scan degraded text documents

    Get PDF
    Fraudulent documents frequently cause severe financial damages and impose security breaches to civil and government organizations. The rapid advances in technology and the widespread availability of personal computers has not reduced the use of printed documents. While digital documents can be verified by many robust and secure methods such as digital signatures and digital watermarks, verification of printed documents still relies on manual inspection of embedded physical security mechanisms.The objective of this thesis is to propose an efficient automated framework for robust content-based verification of printed documents. The principal issue is to achieve robustness with respect to the degradations and increased levels of noise that occur from multiple cycles of printing and scanning. It is shown that classic OCR systems fail under such conditions, moreover OCR systems typically rely heavily on the use of high level linguistic structures to improve recognition rates. However inferring knowledge about the contents of the document image from a-priori statistics is contrary to the nature of document verification. Instead a system is proposed that utilizes specific knowledge of the document to perform highly accurate content verification based on a Print-Scan degradation model and character shape recognition. Such specific knowledge of the document is a reasonable choice for the verification domain since the document contents are already known in order to verify them.The system analyses digital multi font PDF documents to generate a descriptive summary of the document, referred to as \Document Description Map" (DDM). The DDM is later used for verifying the content of printed and scanned copies of the original documents. The system utilizes 2-D Discrete Cosine Transform based features and an adaptive hierarchical classifier trained with synthetic data generated by a Print-Scan degradation model. The system is tested with varying degrees of Print-Scan Channel corruption on a variety of documents with corruption produced by repetitive printing and scanning of the test documents. Results show the approach achieves excellent accuracy and robustness despite the high level of noise
    corecore