416 research outputs found

    On bounding the bandwidth of graphs with symmetry

    Get PDF
    We derive a new lower bound for the bandwidth of a graph that is based on a new lower bound for the minimum cut problem. Our new semidefinite programming relaxation of the minimum cut problem is obtained by strengthening the known semidefinite programming relaxation for the quadratic assignment problem (or for the graph partition problem) by fixing two vertices in the graph; one on each side of the cut. This fixing results in several smaller subproblems that need to be solved to obtain the new bound. In order to efficiently solve these subproblems we exploit symmetry in the data; that is, both symmetry in the min-cut problem and symmetry in the graphs. To obtain upper bounds for the bandwidth of graphs with symmetry, we develop a heuristic approach based on the well-known reverse Cuthill-McKee algorithm, and that improves significantly its performance on the tested graphs. Our approaches result in the best known lower and upper bounds for the bandwidth of all graphs under consideration, i.e., Hamming graphs, 3-dimensional generalized Hamming graphs, Johnson graphs, and Kneser graphs, with up to 216 vertices

    Hardness of Graph Pricing through Generalized Max-Dicut

    Full text link
    The Graph Pricing problem is among the fundamental problems whose approximability is not well-understood. While there is a simple combinatorial 1/4-approximation algorithm, the best hardness result remains at 1/2 assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate within a factor better than 1/4 under the UGC, so that the simple combinatorial algorithm might be the best possible. We also prove that for any ϵ>0\epsilon > 0, there exists δ>0\delta > 0 such that the integrality gap of nδn^{\delta}-rounds of the Sherali-Adams hierarchy of linear programming for Graph Pricing is at most 1/2 + ϵ\epsilon. This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called Generalized Max-Dicut(TT), which has a domain size T+1T + 1 for every T1T \geq 1. Generalized Max-Dicut(1) is well-known Max-Dicut. There is an approximation-preserving reduction from Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and both our results are achieved through this reduction. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform better than LP-based or combinatorial algorithms --- for this arity two CSP, a simple combinatorial algorithm does the best.Comment: 28 page

    Multiple graph matching and applications

    Get PDF
    En aplicaciones de reconocimiento de patrones, los grafos con atributos son en gran medida apropiados. Normalmente, los vértices de los grafos representan partes locales de los objetos i las aristas relaciones entre estas partes locales. No obstante, estas ventajas vienen juntas con un severo inconveniente, la distancia entre dos grafos no puede ser calculada en un tiempo polinómico. Considerando estas características especiales el uso de los prototipos de grafos es necesariamente omnipresente. Las aplicaciones de los prototipos de grafos son extensas, siendo las más habituales clustering, clasificación, reconocimiento de objetos, caracterización de objetos i bases de datos de grafos entre otras. A pesar de la diversidad de aplicaciones de los prototipos de grafos, el objetivo del mismo es equivalente en todas ellas, la representación de un conjunto de grafos. Para construir un prototipo de un grafo todos los elementos del conjunto de enteramiento tienen que ser etiquetados comúnmente. Este etiquetado común consiste en identificar que nodos de que grafos representan el mismo tipo de información en el conjunto de entrenamiento. Una vez este etiquetaje común esta hecho, los atributos locales pueden ser combinados i el prototipo construido. Hasta ahora los algoritmos del estado del arte para calcular este etiquetaje común mancan de efectividad o bases teóricas. En esta tesis, describimos formalmente el problema del etiquetaje global i mostramos una taxonomía de los tipos de algoritmos existentes. Además, proponemos seis nuevos algoritmos para calcular soluciones aproximadas al problema del etiquetaje común. La eficiencia de los algoritmos propuestos es evaluada en diversas bases de datos reales i sintéticas. En la mayoría de experimentos realizados los algoritmos propuestos dan mejores resultados que los existentes en el estado del arte.In pattern recognition, the use of graphs is, to a great extend, appropriate and advantageous. Usually, vertices of the graph represent local parts of an object while edges represent relations between these local parts. However, its advantages come together with a sever drawback, the distance between two graph cannot be optimally computed in polynomial time. Taking into account this special characteristic the use of graph prototypes becomes ubiquitous. The applicability of graphs prototypes is extensive, being the most common applications clustering, classification, object characterization and graph databases to name some. However, the objective of a graph prototype is equivalent to all applications, the representation of a set of graph. To synthesize a prototype all elements of the set must be mutually labeled. This mutual labeling consists in identifying which nodes of which graphs represent the same information in the training set. Once this mutual labeling is done the set can be characterized and combined to create a graph prototype. We call this initial labeling a common labeling. Up to now, all state of the art algorithms to compute a common labeling lack on either performance or theoretical basis. In this thesis, we formally describe the common labeling problem and we give a clear taxonomy of the types of algorithms. Six new algorithms that rely on different techniques are described to compute a suboptimal solution to the common labeling problem. The performance of the proposed algorithms is evaluated using an artificial and several real datasets. In addition, the algorithms have been evaluated on several real applications. These applications include graph databases and group-wise image registration. In most of the tests and applications evaluated the presented algorithms have showed a great improvement in comparison to state of the art applications

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    Towards a better approximation for sparsest cut?

    Full text link
    We give a new (1+ϵ)(1+\epsilon)-approximation for sparsest cut problem on graphs where small sets expand significantly more than the sparsest cut (sets of size n/rn/r expand by a factor lognlogr\sqrt{\log n\log r} bigger, for some small rr; this condition holds for many natural graph families). We give two different algorithms. One involves Guruswami-Sinop rounding on the level-rr Lasserre relaxation. The other is combinatorial and involves a new notion called {\em Small Set Expander Flows} (inspired by the {\em expander flows} of ARV) which we show exists in the input graph. Both algorithms run in time 2O(r)poly(n)2^{O(r)} \mathrm{poly}(n). We also show similar approximation algorithms in graphs with genus gg with an analogous local expansion condition. This is the first algorithm we know of that achieves (1+ϵ)(1+\epsilon)-approximation on such general family of graphs

    Approximate kernel clustering

    Full text link
    In the kernel clustering problem we are given a large n×nn\times n positive semi-definite matrix A=(aij)A=(a_{ij}) with i,j=1naij=0\sum_{i,j=1}^na_{ij}=0 and a small k×kk\times k positive semi-definite matrix B=(bij)B=(b_{ij}). The goal is to find a partition S1,...,SkS_1,...,S_k of {1,...n}\{1,... n\} which maximizes the quantity i,j=1k((i,j)Si×Sjaij)bij. \sum_{i,j=1}^k (\sum_{(i,j)\in S_i\times S_j}a_{ij})b_{ij}. We study the computational complexity of this generic clustering problem which originates in the theory of machine learning. We design a constant factor polynomial time approximation algorithm for this problem, answering a question posed by Song, Smola, Gretton and Borgwardt. In some cases we manage to compute the sharp approximation threshold for this problem assuming the Unique Games Conjecture (UGC). In particular, when BB is the 3×33\times 3 identity matrix the UGC hardness threshold of this problem is exactly 16π27\frac{16\pi}{27}. We present and study a geometric conjecture of independent interest which we show would imply that the UGC threshold when BB is the k×kk\times k identity matrix is 8π9(11k)\frac{8\pi}{9}(1-\frac{1}{k}) for every k3k\ge 3
    corecore