90 research outputs found

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function

    A unified dissipativity approach for stability analysis of piecewise smooth systems

    Get PDF
    The main objective of this paper is to present aunifieddissipativityapproach for stabilityanalysis of piecewisesmooth (PWS) systems with continuous and discontinuous vector fields. The Filippov definition is considered for the solution of these systems. Using the concept of generalized gradients for nonsmooth functions, sufficient conditions for the stability of a PWS system are formulated based on Lyapunov theory. The importance of the proposed approach is that it does not need any a-priori information about attractive sliding modes on switching surfaces, which is in general difficult to obtain. A section on application of the main results to piecewise affine (PWA) systems followed by a section with extensive examples clearly show the usefulness of the proposed unified methodology. In particular, we present an example with a stable sliding mode where the proposed method works and previously suggested methods fail

    Pulse Width Modulated Control of Robotic Manipulators

    Get PDF
    In this paper we propose a practical discontinuous feedback control scheme for the regulation of joint positions of robotic manipulators. A robust on-off switching control strategy based on a pulse-width-modulation (PWM) feedback scheme is proposed for the joint torques. The discontinuous PWM controller design is carried out on the basis of a suitable controller designed for an average model which is of continuous nature. Simulations of the closed loop performance of the proposed control scheme are presented for a two-link robotic manipulato

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach

    Full text link
    corecore