3,311 research outputs found

    Fractional Dirac Bracket and Quantization for Constrained Systems

    Full text link
    So far, it is not well known how to deal with dissipative systems. There are many paths of investigation in the literature and none of them present a systematic and general procedure to tackle the problem. On the other hand, it is well known that the fractional formalism is a powerful alternative when treating dissipative problems. In this paper we propose a detailed way of attacking the issue using fractional calculus to construct an extension of the Dirac brackets in order to carry out the quantization of nonconservative theories through the standard canonical way. We believe that using the extended Dirac bracket definition it will be possible to analyze more deeply gauge theories starting with second-class systems.Comment: Revtex 4.1. 9 pages, two-column. Final version to appear in Physical Review

    Between Laws and Models: Some Philosophical Morals of Lagrangian Mechanics

    Get PDF
    I extract some philosophical morals from some aspects of Lagrangian mechanics. (A companion paper will present similar morals from Hamiltonian mechanics and Hamilton-Jacobi theory.) One main moral concerns methodology: Lagrangian mechanics provides a level of description of phenomena which has been largely ignored by philosophers, since it falls between their accustomed levels--``laws of nature'' and ``models''. Another main moral concerns ontology: the ontology of Lagrangian mechanics is both more subtle and more problematic than philosophers often realize. The treatment of Lagrangian mechanics provides an introduction to the subject for philosophers, and is technically elementary. In particular, it is confined to systems with a finite number of degrees of freedom, and for the most part eschews modern geometry. But it includes a presentation of Routhian reduction and of Noether's ``first theorem''.Comment: 106 pages, no figure

    Poisson integrators

    Full text link
    An overview of Hamiltonian systems with noncanonical Poisson structures is given. Examples of bi-Hamiltonian ode's, pde's and lattice equations are presented. Numerical integrators using generating functions, Hamiltonian splitting, symplectic Runge-Kutta methods are discussed for Lie-Poisson systems and Hamiltonian systems with a general Poisson structure. Nambu-Poisson systems and the discrete gradient methods are also presented.Comment: 30 page

    Discrete Hamilton-Jacobi Theory

    Full text link
    We develop a discrete analogue of Hamilton-Jacobi theory in the framework of discrete Hamiltonian mechanics. The resulting discrete Hamilton-Jacobi equation is discrete only in time. We describe a discrete analogue of Jacobi's solution and also prove a discrete version of the geometric Hamilton-Jacobi theorem. The theory applied to discrete linear Hamiltonian systems yields the discrete Riccati equation as a special case of the discrete Hamilton-Jacobi equation. We also apply the theory to discrete optimal control problems, and recover some well-known results, such as the Bellman equation (discrete-time HJB equation) of dynamic programming and its relation to the costate variable in the Pontryagin maximum principle. This relationship between the discrete Hamilton-Jacobi equation and Bellman equation is exploited to derive a generalized form of the Bellman equation that has controls at internal stages.Comment: 26 pages, 2 figure

    Characteristics, Bicharacteristics, and Geometric Singularities of Solutions of PDEs

    Full text link
    Many physical systems are described by partial differential equations (PDEs). Determinism then requires the Cauchy problem to be well-posed. Even when the Cauchy problem is well-posed for generic Cauchy data, there may exist characteristic Cauchy data. Characteristics of PDEs play an important role both in Mathematics and in Physics. I will review the theory of characteristics and bicharacteristics of PDEs, with a special emphasis on intrinsic aspects, i.e., those aspects which are invariant under general changes of coordinates. After a basically analytic introduction, I will pass to a modern, geometric point of view, presenting characteristics within the jet space approach to PDEs. In particular, I will discuss the relationship between characteristics and singularities of solutions and observe that: "wave-fronts are characteristic surfaces and propagate along bicharacteristics". This remark may be understood as a mathematical formulation of the wave/particle duality in optics and/or quantum mechanics. The content of the paper reflects the three hour minicourse that I gave at the XXII International Fall Workshop on Geometry and Physics, September 2-5, 2013, Evora, Portugal.Comment: 26 pages, short elementary review submitted for publication on the Proceedings of XXII IFWG

    Discrete Hamiltonian Variational Integrators

    Full text link
    We consider the continuous and discrete-time Hamilton's variational principle on phase space, and characterize the exact discrete Hamiltonian which provides an exact correspondence between discrete and continuous Hamiltonian mechanics. The variational characterization of the exact discrete Hamiltonian naturally leads to a class of generalized Galerkin Hamiltonian variational integrators, which include the symplectic partitioned Runge-Kutta methods. We also characterize the group invariance properties of discrete Hamiltonians which lead to a discrete Noether's theorem.Comment: 23 page

    Involutive constrained systems and Hamilton-Jacobi formalism

    Full text link
    In this paper, we study singular systems with complete sets of involutive constraints. The aim is to establish, within the Hamilton-Jacobi theory, the relationship between the Frobenius' theorem, the infinitesimal canonical transformations generated by constraints in involution with the Poisson brackets, and the lagrangian point (gauge) transformations of physical systems

    Parcel Eulerian-Lagrangian fluid dynamics for rotating geophysical flows

    Get PDF
    Parcel Eulerian-Lagrangian Hamiltonian formulations have recently been used in structure-preserving numerical schemes, asymptotic calculations and in alternative explanations of fluid parcel (in) stabilities. A parcel formulation describes the dynamics of one fluid parcel with a Lagrangian kinetic energy but an Eulerian potential evaluated at the parcel's position. In this paper, we derive the geometric link between the parcel Eulerian-Lagrangian formulation and well-known variational and Hamiltonian formulations for three models of ideal and geophysical fluid flow: generalized two-dimensional vorticity-stream function dynamics, the rotating two-dimensional shallow-water equations and the rotating three-dimensional compressible Euler equations
    • ā€¦
    corecore