68 research outputs found

    Exploiting graph structures for computational efficiency

    Get PDF
    Coping with NP-hard graph problems by doing better than simply brute force is a field of significant practical importance, and which have also sparked wide theoretical interest. One route to cope with such hard graph problems is to exploit structures which can possibly be found in the input data or in the witness for a solution. In the framework of parameterized complexity, we attempt to quantify such structures by defining numbers which describe "how structured" the graph is. We then do a fine-grained classification of its computational complexity, where not only the input size, but also the structural measure in question come in to play. There is a number of structural measures called width parameters, which includes treewidth, clique-width, and mim-width. These width parameters can be compared by how many classes of graphs that have bounded width. In general there is a tradeoff; if more graph classes have bounded width, then fewer problems can be efficiently solved with the aid of a small width; and if a width is bounded for only a few graph classes, then it is easier to design algorithms which exploit the structure described by the width parameter. For each of the mentioned width parameters, there are known meta-theorems describing algorithmic results for a wide array of graph problems. Hence, showing that decompositions with bounded width can be found for a certain graph class yields algorithmic results for the given class. In the current thesis, we show that several graph classes have bounded width measures, which thus gives algorithmic consequences. Algorithms which are FPT or XP parameterized by width parameters are exploiting structure of the input graph. However, it is also possible to exploit structures that are required of a witness to the solution. We use this perspective to give a handful of polynomial-time algorithms for NP-hard problems whenever the witness belongs to certain graph classes. It is also possible to combine structures of the input graph with structures of the solution witnesses in order to obtain parameterized algorithms, when each structure individually is provably insufficient to provide so under standard complexity assumptions. We give an example of this in the final chapter of the thesis

    Mim-Width III. Graph powers and generalized distance domination problems

    Get PDF
    We generalize the family of (σ,ρ) problems and locally checkable vertex partition problems to their distance versions, which naturally captures well-known problems such as Distance-r Dominating Set and Distance-r Independent Set. We show that these distance problems are in XP parameterized by the structural parameter mim-width, and hence polynomial-time solvable on graph classes where mim-width is bounded and quickly computable, such as k-trapezoid graphs, Dilworth k-graphs, (circular) permutation graphs, interval graphs and their complements, convex graphs and their complements, k-polygon graphs, circular arc graphs, complements of d-degenerate graphs, and H-graphs if given an H-representation. We obtain these results by showing that taking any power of a graph never increases its mim-width by more than a factor of two. To supplement these findings, we show that many classes of (σ,ρ) problems are W[1]-hard parameterized by mimwidth + solution size. We show that powers of graphs of tree-width w − 1 or path-width w and powers of graphs of clique-width w have mim-width at most w. These results provide new classes of bounded mim-width. We prove a slight strengthening of the first statement which implies that, surprisingly, Leaf Power graphs which are of importance in the field of phylogenetic studies have mim-width at most 1.publishedVersio

    More applications of the d-neighbor equivalence: acyclicity and connectivity constraints

    Full text link
    In this paper, we design a framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex Set. We design a meta-algorithm that solves all these problems and whose running time is upper bounded by 2O(k)nO(1)2^{O(k)}\cdot n^{O(1)}, 2O(klog(k))nO(1)2^{O(k \log(k))}\cdot n^{O(1)}, 2O(k2)nO(1)2^{O(k^2)}\cdot n^{O(1)} and nO(k)n^{O(k)} where kk is respectively the clique-width, Q\mathbb{Q}-rank-width, rank-width and maximum induced matching width of a given decomposition. Our meta-algorithm simplifies and unifies the known algorithms for each of the parameters and its running time matches asymptotically also the running times of the best known algorithms for basic NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the dd-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain highlight the importance of this equivalence relation on the algorithmic applications of width measures. We also prove that our framework could be useful for W[1]W[1]-hard problems parameterized by clique-width such as Max Cut and Maximum Minimal Cut. For these latter problems, we obtain nO(k)n^{O(k)}, nO(k)n^{O(k)} and n2O(k)n^{2^{O(k)}} time algorithms where kk is respectively the clique-width, the Q\mathbb{Q}-rank-width and the rank-width of the input graph

    On the Linear MIM-width of Trees

    Get PDF
    Linear MIM-width, and its generalization MIM-width, is a graph width parameter that has become noted for having bounded value on several important graph classes, e.g. interval graphs and permutation graphs. The linear MIM-width of a graph G measures a min-max relation on all maximum induced matchings in bipartite graphs given by a linear layout of the vertices in G, over all possible linear layouts. In this thesis we give an overlook of some of the research that has been done on this parameter, and provide a new result, computing the linear MIM-width of trees in n log n time.Masteroppgåve i informatikkINF399MAMN-PROGMAMN-IN

    Classes of Intersection Digraphs with Good Algorithmic Properties

    Get PDF
    While intersection graphs play a central role in the algorithmic analysis of hard problems on undirected graphs, the role of intersection digraphs in algorithms is much less understood. We present several contributions towards a better understanding of the algorithmic treatment of intersection digraphs. First, we introduce natural classes of intersection digraphs that generalize several classes studied in the literature. Second, we define the directed locally checkable vertex (DLCV) problems, which capture many well-studied problems on digraphs such as (Independent) Dominating Set, Kernel, and H-Homomorphism. Third, we give a new width measure of digraphs, bi-mim-width, and show that the DLCV problems are polynomial-time solvable when we are provided a decomposition of small bi-mim-width. Fourth, we show that several classes of intersection digraphs have bounded bi-mim-width, implying that we can solve all DLCV problems on these classes in polynomial time given an intersection representation of the input digraph. We identify reflexivity as a useful condition to obtain intersection digraph classes of bounded bi-mim-width, and therefore to obtain positive algorithmic results
    corecore