28 research outputs found

    Generalized Degrees of Freedom of the Symmetric Cache-Aided MISO Broadcast Channel with Partial CSIT

    Get PDF
    We consider the cache-aided MISO broadcast channel (BC) in which a multi-antenna transmitter serves KK single-antenna receivers, each equipped with a cache memory. The transmitter has access to partial knowledge of the channel state information. For a symmetric setting, in terms of channel strength levels, partial channel knowledge levels and cache sizes, we characterize the generalized degrees of freedom (GDoF) up to a constant multiplicative factor. The achievability scheme exploits the interplay between spatial multiplexing gains and coded-multicasting gain. On the other hand, a cut-set-based argument in conjunction with a GDoF outer bound for a parallel MISO BC under channel uncertainty are used for the converse. We further show that the characterized order-optimal GDoF is also attained in a decentralized setting, where no coordination is required for content placement in the caches.Comment: first revisio

    Wyner's Network on Caches: Combining Receiver Caching with a Flexible Backhaul

    Full text link
    In this work, we study a large linear interference network with an equal number of transmitters and receivers, where each transmitter is connected to two subsequent receivers. Each transmitter has individual access to a backhaul link (fetching the equivalent of MTM_{T} files), while each receiver can cache a fraction γ\gamma of the library. We explore the tradeoff between the communication rate, backhaul load, and caching storage by designing algorithms that can harness the benefits of cooperative transmission in partially connected networks, while exploiting the advantages of multicast transmissions attributed to user caching. We show that receiver caching and fetching content from the backhaul are two resources that can simultaneously increase the delivery performance in synergistic ways. Specifically, an interesting outcome of this work is that user caching of a fraction γ\gamma of the library can increase the per-user Degrees of Freedom (puDoF) by γ\gamma. Further, the results reveal significant savings in the backhaul load, even in the small cache size region. For example, the puDoF achieved using the pair (MT=8,γ=0)(M_{T}=8, \gamma=0) can also be achieved with the pairs (MT=4,γ=0.035)(M_{T}=4,\gamma=0.035) and (MT=2,γ=0.1)(M_{T}=2,\gamma=0.1), showing that even small caches can provide significant savings in the backhaul load.Comment: 8 pages, 2 figures, submitted to ISIT 201

    Content delivery over multi-antenna wireless networks

    Get PDF
    The past few decades have witnessed unprecedented advances in information technology, which have significantly shaped the way we acquire and process information in our daily lives. Wireless communications has become the main means of access to data through mobile devices, resulting in a continuous exponential growth in wireless data traffic, mainly driven by the demand for high quality content. Various technologies have been proposed by researchers to tackle this growth in 5G and beyond, including the use of increasing number of antenna elements, integrated point-to-multipoint delivery and caching, which constitute the core of this thesis. In particular, we study non-orthogonal content delivery in multiuser multiple-input-single-output (MISO) systems. First, a joint beamforming strategy for simultaneous delivery of broadcast and unicast services is investigated, based on layered division multiplexing (LDM) as a means of superposition coding. The system performance in terms of minimum required power under prescribed quality-of-service (QoS) requirements is examined in comparison with time division multiplexing (TDM). It is demonstrated through simulations that the non-orthogonal delivery strategy based on LDM significantly outperforms the orthogonal strategy based on TDM in terms of system throughput and reliability. To facilitate efficient implementation of the LDM-based beamforming design, we further propose a dual decomposition-based distributed approach. Next, we study an efficient multicast beamforming design in cache-aided multiuser MISO systems, exploiting proactive content placement and coded delivery. It is observed that the complexity of this problem grows exponentially with the number of subfiles delivered to each user in each time slot, which itself grows exponentially with the number of users in the system. Therefore, we propose a low-complexity alternative through time-sharing that limits the number of subfiles that can be received by a user in each time slot. Moreover, a joint design of content delivery and multicast beamforming is proposed to further enhance the system performance, under the constraint on maximum number of subfiles each user can decode in each time slot. Finally, conclusions are drawn in Chapter 5, followed by an outlook for future works.Open Acces

    Fundamental Limits of Wireless Caching Under Mixed Cacheable and Uncacheable Traffic

    Full text link
    We consider cache-aided wireless communication scenarios where each user requests both a file from an a-priori generated cacheable library (referred to as 'content'), and an uncacheable 'non-content' message generated at the start of the wireless transmission session. This scenario is easily found in real-world wireless networks, where the two types of traffic coexist and share limited radio resources. We focus on single-transmitter, single-antenna wireless networks with cache-aided receivers, where the wireless channel is modelled by a degraded Gaussian broadcast channel (GBC). For this setting, we study the delay-rate trade-off, which characterizes the content delivery time and non-content communication rates that can be achieved simultaneously. We propose a scheme based on the separation principle, which isolates the coded caching and multicasting problem from the physical layer transmission problem. We show that this separation-based scheme is sufficient for achieving an information-theoretically order optimal performance, up to a multiplicative factor of 2.01 for the content delivery time, when working in the generalized degrees of freedom (GDoF) limit. We further show that the achievable performance is near-optimal after relaxing the GDoF limit, up to an additional additive factor of 2 bits per dimension for the non-content rates. A key insight emerging from our scheme is that in some scenarios considerable amounts of non-content traffic can be communicated while maintaining the minimum content delivery time, achieved in the absence of non-content messages; compliments of 'topological holes' arising from asymmetries in wireless channel gains.Comment: Accepted for publication in the IEEE Transactions on Information Theor
    corecore