980 research outputs found

    Cubic spline fractal solutions of two-point boundary value problems with a non-homogeneous nowhere differentiable term

    Get PDF
    Fractal interpolation functions (FIFs) supplement and subsume all classical interpolants. The major advantage by the use of fractal functions is that they can capture either the irregularity or the smoothness associated with a function. This work proposes the use of cubic spline FIFs through moments for the solutions of a two-point boundary value problem (BVP) involving a complicated non-smooth function in the non-homogeneous second order differential equation. In particular, we have taken a second order linear BVP: y''(x)+Q(x)y'(x)+P(x)y(x)=R(x) with the Dirichlet''s boundary conditions, where P(x) and Q(x) are smooth, but R(x) may be a continuous nowhere differentiable function. Using the discretized version of the differential equation, the moments are computed through a tridiagonal system obtained from the continuity conditions at the internal grids and endpoint conditions by the derivative function. These moments are then used to construct the cubic fractal spline solution of the BVP, where the non-smooth nature of y'' can be captured by fractal methodology. When the scaling factors associated with the fractal spline are taken as zero, the fractal solution reduces to the classical cubic spline solution of the BVP. We prove that the proposed method is convergent based on its truncation error analysis at grid points. Numerical examples are given to support the advantage of the fractal methodology

    Phase shift in experimental trajectory scaling functions

    Full text link
    For one dimensional maps the trajectory scaling functions is invariant under coordinate transformations and can be used to compute any ergodic average. It is the most stringent test between theory and experiment, but so far it has proven difficult to extract from experimental data. It is shown that the main difficulty is a dephasing of the experimental orbit which can be corrected by reconstructing the dynamics from several time series. From the reconstructed dynamics the scaling function can be accurately extracted.Comment: CYCLER Paper 93mar008. LaTeX, LAUR-92-3053. Replaced with a version with all figure

    Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Get PDF
    INE/AUTC 12.0

    Optimal B-spline bases for the numerical solution of fractional differential problems

    Get PDF
    Efficient numerical methods to solve fractional differential problems are particularly required in order to approximate accurately the nonlocal behavior of the fractional derivative. The aim of the paper is to show how optimal B-spline bases allow us to construct accurate numerical methods that have a low computational cost. First of all, we describe in detail how to construct optimal B-spline bases on bounded intervals and recall their main properties. Then, we give the analytical expression of their derivatives of fractional order and use these bases in the numerical solution of fractional differential problems. Some numerical tests showing the good performances of the bases in solving a time-fractional diffusion problem by a collocation-Galerkin method are also displayed

    Sampling from a system-theoretic viewpoint: Part II - Noncausal solutions

    Get PDF
    This paper puts to use concepts and tools introduced in Part I to address a wide spectrum of noncausal sampling and reconstruction problems. Particularly, we follow the system-theoretic paradigm by using systems as signal generators to account for available information and system norms (L2 and L∞) as performance measures. The proposed optimization-based approach recovers many known solutions, derived hitherto by different methods, as special cases under different assumptions about acquisition or reconstructing devices (e.g., polynomial and exponential cardinal splines for fixed samplers and the Sampling Theorem and its modifications in the case when both sampler and interpolator are design parameters). We also derive new results, such as versions of the Sampling Theorem for downsampling and reconstruction from noisy measurements, the continuous-time invariance of a wide class of optimal sampling-and-reconstruction circuits, etcetera
    • 

    corecore