9,225 research outputs found

    Particle algorithms for optimization on binary spaces

    Full text link
    We discuss a unified approach to stochastic optimization of pseudo-Boolean objective functions based on particle methods, including the cross-entropy method and simulated annealing as special cases. We point out the need for auxiliary sampling distributions, that is parametric families on binary spaces, which are able to reproduce complex dependency structures, and illustrate their usefulness in our numerical experiments. We provide numerical evidence that particle-driven optimization algorithms based on parametric families yield superior results on strongly multi-modal optimization problems while local search heuristics outperform them on easier problems

    Generalized decomposition and cross entropy methods for many-objective optimization

    Get PDF
    Decomposition-based algorithms for multi-objective optimization problems have increased in popularity in the past decade. Although their convergence to the Pareto optimal front (PF) is in several instances superior to that of Pareto-based algorithms, the problem of selecting a way to distribute or guide these solutions in a high-dimensional space has not been explored. In this work, we introduce a novel concept which we call generalized decomposition. Generalized decomposition provides a framework with which the decision maker (DM) can guide the underlying evolutionary algorithm toward specific regions of interest or the entire Pareto front with the desired distribution of Pareto optimal solutions. Additionally, it is shown that generalized decomposition simplifies many-objective problems by unifying the three performance objectives of multi-objective evolutionary algorithms – convergence to the PF, evenly distributed Pareto optimal solutions and coverage of the entire front – to only one, that of convergence. A framework, established on generalized decomposition, and an estimation of distribution algorithm (EDA) based on low-order statistics, namely the cross-entropy method (CE), is created to illustrate the benefits of the proposed concept for many objective problems. This choice of EDA also enables the test of the hypothesis that low-order statistics based EDAs can have comparable performance to more elaborate EDAs

    Semiparametric Cross Entropy for rare-event simulation

    Full text link
    The Cross Entropy method is a well-known adaptive importance sampling method for rare-event probability estimation, which requires estimating an optimal importance sampling density within a parametric class. In this article we estimate an optimal importance sampling density within a wider semiparametric class of distributions. We show that this semiparametric version of the Cross Entropy method frequently yields efficient estimators. We illustrate the excellent practical performance of the method with numerical experiments and show that for the problems we consider it typically outperforms alternative schemes by orders of magnitude

    Data-Driven Methods and Applications for Optimization under Uncertainty and Rare-Event Simulation

    Full text link
    For most of decisions or system designs in practice, there exist chances of severe hazards or system failures that can be catastrophic. The occurrence of such hazards is usually uncertain, and hence it is important to measure and analyze the associated risks. As a powerful tool for estimating risks, rare-event simulation techniques are used to improve the efficiency of the estimation when the risk occurs with an extremely small probability. Furthermore, one can utilize the risk measurements to achieve better decisions or designs. This can be achieved by modeling the task into a chance constrained optimization problem, which optimizes an objective with a controlled risk level. However, recent problems in practice have become more data-driven and hence brought new challenges to the existing literature in these two domains. In this dissertation, we will discuss challenges and remedies in data-driven problems for rare-event simulation and chance constrained problems. We propose a robust optimization based framework for approaching chance constrained optimization problems under a data-driven setting. We also analyze the impact of tail uncertainty in data-driven rare-event simulation tasks. On the other hand, due to recent breakthroughs in machine learning techniques, the development of intelligent physical systems, e.g. autonomous vehicles, have been actively investigated. Since these systems can cause catastrophes to public safety, the evaluation of their machine learning components and system performance is crucial. This dissertation will cover problems arising in the evaluation of such systems. We propose an importance sampling scheme for estimating rare events defined by machine learning predictors. Lastly, we discuss an application project in evaluating the safety of autonomous vehicle driving algorithms.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163270/1/zhyhuang_1.pd
    • …
    corecore