184 research outputs found

    'Constant in gain Lead in phase' element - Application in precision motion control

    Full text link
    This work presents a novel 'Constant in gain Lead in phase' (CgLp) element using nonlinear reset technique. PID is the industrial workhorse even to this day in high-tech precision positioning applications. However, Bode's gain phase relationship and waterbed effect fundamentally limit performance of PID and other linear controllers. This paper presents CgLp as a controlled nonlinear element which can be introduced within the framework of PID allowing for wide applicability and overcoming linear control limitations. Design of CgLp with generalized first order reset element (GFORE) and generalized second order reset element (GSORE) (introduced in this work) is presented using describing function analysis. A more detailed analysis of reset elements in frequency domain compared to existing literature is first carried out for this purpose. Finally, CgLp is integrated with PID and tested on one of the DOFs of a planar precision positioning stage. Performance improvement is shown in terms of tracking, steady-state precision and bandwidth

    Loop-shaping for reset control systems -- A higher-order sinusoidal-input describing functions approach

    Full text link
    The ever-growing demands on speed and precision from the precision motion industry have pushed control requirements to reach the limitations of linear control theory. Nonlinear controllers like reset provide a viable alternative since they can be easily integrated into the existing linear controller structure and designed using industry-preferred loop-shaping techniques. However, currently, loop-shaping is achieved using the describing function (DF) and performance analysed using linear control sensitivity functions not applicable for reset control systems, resulting in a significant deviation between expected and practical results. We overcome this major bottleneck to the wider adaptation of reset control with two contributions in this paper. First, we present the extension of frequency-domain tools for reset controllers in the form of higher-order sinusoidal-input describing functions (HOSIDFs) providing greater insight into their behaviour. Second, we propose a novel method which uses the DF and HOSIDFs of the open-loop reset control system for the estimation of the closed-loop sensitivity functions, establishing for the first time - the relation between open-loop and closed-loop behaviour of reset control systems in the frequency domain. The accuracy of the proposed solution is verified in both simulation and practice on a precision positioning stage and these results are further analysed to obtain insights into the tuning considerations for reset controllers

    Hybrid Integrator-Gain Systems:Analysis, Design, and Applications

    Get PDF

    Band-Passing Nonlinearity in Reset Elements

    Full text link
    This paper addresses nonlinearity in reset elements and their effects. Reset elements are known for having less phase lag compared to their linear counterparts; however, they are nonlinear elements and produce higher-order harmonics. This paper investigates the higher-order harmonics for reset elements with one resetting state and proposes an architecture and a method of design which allows for band-passing the nonlinearity and its effects, namely, higher-order harmonics and phase advantage. The nonlinearity of reset elements is not entirely useful for all frequencies, e.g., they are useful for reducing phase lag at cross-over frequency region; however, higher-order harmonics can compromise tracking and disturbance rejection performance at lower frequencies. Using proposed "phase shaping" method, one can selectively suppress nonlinearity of a single-state reset element in a desired range of frequencies and allow the nonlinearity to provide its phase benefit in a different desired range of frequencies. This can be especially useful for the reset elements in the framework of "Constant in gain, Lead in phase" (CgLp) filter, which is a newly introduced nonlinear filter, bound to circumvent the well-known linear control limitation -- the waterbed effect
    • …
    corecore