170 research outputs found

    Causal Dynamics of Discrete Surfaces

    Full text link
    We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.Comment: In Proceedings DCM 2013, arXiv:1403.768

    Causal graph dynamics

    Full text link
    We extend the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these "causal graph dynamics" is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions, and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. KEYWORDS: Dynamical networks, Boolean networks, Generative networks automata, Cayley cellular automata, Graph Automata, Graph rewriting automata, Parallel graph transformations, Amalgamated graph transformations, Time-varying graphs, Regge calculus, Local, No-signalling.Comment: 25 pages, 9 figures, LaTeX, v2: Minor presentation improvements, v3: Typos corrected, figure adde

    Graph subshifts

    Full text link
    We propose a definition of graph subshifts of finite type that can be seen as extending both the notions of subshifts of finite type from classical symbolic dynamics and finitely presented groups from combinatorial group theory. These are sets of graphs that are defined by forbidding finitely many local patterns. In this paper, we focus on the question whether such local conditions can enforce a specific support graph, and thus relate the model to classical symbolic dynamics. We prove that the subshifts that contain only infinite graphs are either aperiodic, or feature no residual finiteness of their period group, yielding non-trivial examples as well as two natural undecidability theorems.Comment: 13 pages, 4 figure

    Inverse monoids and immersions of 2-complexes

    Get PDF
    It is well known that under mild conditions on a connected topological space X\mathcal X, connected covers of X\mathcal X may be classified via conjugacy classes of subgroups of the fundamental group of X\mathcal X. In this paper, we extend these results to the study of immersions into 2-dimensional CW-complexes. An immersion f:D→Cf : {\mathcal D} \rightarrow \mathcal C between CW-complexes is a cellular map such that each point y∈Dy \in {\mathcal D} has a neighborhood UU that is mapped homeomorphically onto f(U)f(U) by ff. In order to classify immersions into a 2-dimensional CW-complex C\mathcal C, we need to replace the fundamental group of C\mathcal C by an appropriate inverse monoid. We show how conjugacy classes of the closed inverse submonoids of this inverse monoid may be used to classify connected immersions into the complex

    Around the Domino Problem – Combinatorial Structures and Algebraic Tools

    Get PDF
    Given a finite set of square tiles, the domino problem is the question of whether is it possible to tile the plane using these tiles. This problem is known to be undecidable in the planar case, and is strongly linked to the question of the periodicity of the tiling. In this thesis we look at this problem in two different ways: first, we look at the particular case of low complexity tilings and second we generalize it to more general structures than the plane, groups. A tiling of the plane is said of low complexity if there are at most mn rectangles of size m × n appearing in it. Nivat conjectured in 1997 that any such tiling must be periodic, with the consequence that the domino problem would be decidable for low complexity tilings. Using algebraic tools introduced by Kari and Szabados, we prove a generalized version of Nivat’s conjecture for a particular class of tilings (a subclass of what is called of algebraic subshifts). We also manage to prove that Nivat’s conjecture holds for uniformly recurrent tilings, with the consequence that the domino problem is indeed decidable for low-complexity tilings. The domino problem can be formulated in the more general context of Cayley graphs of groups. In this thesis, we develop new techniques allowing to relate the Cayley graph of some groups with graphs of substitutions on words. A first technique allows us to show that there exists both strongly periodic and weakly-but-not-strongly aperiodic tilings of the Baumslag-Solitar groups BS(1, n). A second technique is used to show that the domino problem is undecidable for surface groups. Which provides yet another class of groups verifying the conjecture saying that the domino problem of a group is decidable if and only if the group is virtually free
    • …
    corecore