655 research outputs found

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    A survey of compiler development aids

    Get PDF
    A theoretical background was established for the compilation process by dividing it into five phases and explaining the concepts and algorithms that underpin each. The five selected phases were lexical analysis, syntax analysis, semantic analysis, optimization, and code generation. Graph theoretical optimization techniques were presented, and approaches to code generation were described for both one-pass and multipass compilation environments. Following the initial tutorial sections, more than 20 tools that were developed to aid in the process of writing compilers were surveyed. Eight of the more recent compiler development aids were selected for special attention - SIMCMP/STAGE2, LANG-PAK, COGENT, XPL, AED, CWIC, LIS, and JOCIT. The impact of compiler development aids were assessed some of their shortcomings and some of the areas of research currently in progress were inspected

    A Neural Network Architecture for Syntax Analysis

    Get PDF
    Artificial neural networks (ANNs), due to their inherent parallelism and potential fault tolerance, offer an attractive paradigm for robust and efficient implementations of syntax analyzers. This paper proposes a modular neural network architecture for syntax analysis on continuous input stream of characters. The components of the proposed architecture include neural network designs for a stack, a lexical analyzer, a grammar parser and a parse tree construction module. The proposed NN stack allows simulation of a stack of large depth, needs no training, and hence is not application-specific. The proposed NN lexical analyzer provides a relatively efficient and high performance alternative to current computer systems for lexical analysis especially in natural language processing applications. The proposed NN parser generates parse trees by parsing strings from widely used subsets of deterministic context-free languages (generated by LR grammars). The estimated performance of the proposed neural network architecture (based on current CMOS VLSI technology) for syntax analysis is compared with that of commonly used approaches to syntax analysis in current computer systems. The results of this performance comparison suggest that the proposed neural network architecture offers an attractive approach for syntax analysis in a wide range of practical applications such as programming language compilation and natural language processing

    GLL syntax analysers for EBNF grammars

    Get PDF

    LR(k) sparse-parsers and their optimisation

    Get PDF
    PhD ThesisA method of syntactic analysis is developed which . . is believed to surpass all known competitors in all major respects. I The method is based upon that associated with the LR(k) grammars but is faster because it bypasses all reduction steps concerned with 'chain' productions. These are freely selected productions which are considered semantically irrelevant and whose right parts consist of just a single symbol. The parses produced by the method are 'sparse' in that they contain no references to chain productions - they are termed 'chain-free' parses. The CFLR(k) grammars are introduced as the largest class which can be -Chain-F-ree parsed from -Le-ft to Right while looking ~ symbols ahead of the current point of the parse. The properties of these grammars are examined in detail and their relationship to the conventional LR(k) grammars is explored. Techniques are presented for testing grammars for the CFLR(k) property and for constructing chain-free parsers for those grammars possessing the property. Methods are also presented for. converting ordinary LR(k) parsers into chain-free parsers. CFLR(k) parsers are more widely applicable than their LR(k) counterparts, are faster 'and provide the same excellent detection of syntactic errors. Unfortunately they also tend to be rather larger. A 'simple optimization is presented which completely'overcomes this single disadvantage without sacrificing any of the advantages of the method. These theoretical techniques are adapted to provide truly practical chain-free parsers based on the conventional SLR and,LALR parsing methods. Detailed consideration is given to use of 'default reductions' and related techniques for achd.evfng compact representations of these parsers. The resulting chain-free parsers are not only faster than their ordinary counterparts, but probably smaller too. We believe their advantages are such that they should substantially replace other parsing methods currently used in programming language compilers

    A Drop-in Replacement for LR(1) Table-Driven Parsing

    Get PDF
    This paper presents a construction method for a deterministic one-symbol look-ahead LR parser which allows non-terminals in the parser look-ahead. This effectively relaxes the requirement of parsing the reverse of the right-most derivation of a string/sentence. This is achieved by replacing the deterministic push down automata of LR parsing by a two-stack automata. The class of grammars accepted by the two-stack parser properly contains the LR(k) grammars. Since the modification to the table-driven LR parsing process is relatively minor and mostly impacts the creation of the goto and action tables, a parser modified to adopt the two-stack process should be comparable in size and performance to LR parsers.</p

    Exploring and visualizing GLL parsing

    Get PDF
    • …
    corecore