78,659 research outputs found

    Common pulse retrieval algorithm: a fast and universal method to retrieve ultrashort pulses

    Full text link
    We present a common pulse retrieval algorithm (COPRA) that can be used for a broad category of ultrashort laser pulse measurement schemes including frequency-resolved optical gating (FROG), interferometric FROG, dispersion scan, time domain ptychography, and pulse shaper assisted techniques such as multiphoton intrapulse interference phase scan (MIIPS). We demonstrate its properties in comprehensive numerical tests and show that it is fast, reliable and accurate in the presence of Gaussian noise. For FROG it outperforms retrieval algorithms based on generalized projections and ptychography. Furthermore, we discuss the pulse retrieval problem as a nonlinear least-squares problem and demonstrate the importance of obtaining a least-squares solution for noisy data. These results improve and extend the possibilities of numerical pulse retrieval. COPRA is faster and provides more accurate results in comparison to existing retrieval algorithms. Furthermore, it enables full pulse retrieval from measurements for which no retrieval algorithm was known before, e.g., MIIPS measurements

    The Simplest Evaluation Measures for XML Information Retrieval that Could Possibly Work

    Get PDF
    This paper reviews several evaluation measures developed for evaluating XML information retrieval (IR) systems. We argue that these measures, some of which are currently in use by the INitiative for the Evaluation of XML Retrieval (INEX), are complicated, hard to understand, and hard to explain to users of XML IR systems. To show the value of keeping things simple, we report alternative evaluation results of official evaluation runs submitted to INEX 2004 using simple metrics, and show its value for INEX

    Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination

    Get PDF
    We consider the Rao geodesic distance (GD) based on the Fisher information as a similarity measure on the manifold of zero-mean multivariate generalized Gaussian distributions (MGGD). The MGGD is shown to be an adequate model for the heavy-tailed wavelet statistics in multicomponent images, such as color or multispectral images. We discuss the estimation of MGGD parameters using various methods. We apply the GD between MGGDs to color texture discrimination in several classification experiments, taking into account the correlation structure between the spectral bands in the wavelet domain. We compare the performance, both in terms of texture discrimination capability and computational load, of the GD and the Kullback-Leibler divergence (KLD). Likewise, both uni- and multivariate generalized Gaussian models are evaluated, characterized by a fixed or a variable shape parameter. The modeling of the interband correlation significantly improves classification efficiency, while the GD is shown to consistently outperform the KLD as a similarity measure

    A D.C. Programming Approach to the Sparse Generalized Eigenvalue Problem

    Full text link
    In this paper, we consider the sparse eigenvalue problem wherein the goal is to obtain a sparse solution to the generalized eigenvalue problem. We achieve this by constraining the cardinality of the solution to the generalized eigenvalue problem and obtain sparse principal component analysis (PCA), sparse canonical correlation analysis (CCA) and sparse Fisher discriminant analysis (FDA) as special cases. Unlike the ā„“1\ell_1-norm approximation to the cardinality constraint, which previous methods have used in the context of sparse PCA, we propose a tighter approximation that is related to the negative log-likelihood of a Student's t-distribution. The problem is then framed as a d.c. (difference of convex functions) program and is solved as a sequence of convex programs by invoking the majorization-minimization method. The resulting algorithm is proved to exhibit \emph{global convergence} behavior, i.e., for any random initialization, the sequence (subsequence) of iterates generated by the algorithm converges to a stationary point of the d.c. program. The performance of the algorithm is empirically demonstrated on both sparse PCA (finding few relevant genes that explain as much variance as possible in a high-dimensional gene dataset) and sparse CCA (cross-language document retrieval and vocabulary selection for music retrieval) applications.Comment: 40 page

    Multivariate texture discrimination based on geodesics to class centroids on a generalized Gaussian Manifold

    Get PDF
    A texture discrimination scheme is proposed wherein probability distributions are deployed on a probabilistic manifold for modeling the wavelet statistics of images. We consider the Rao geodesic distance (GD) to the class centroid for texture discrimination in various classification experiments. We compare the performance of GD to class centroid with the Euclidean distance in a similar context, both in terms of accuracy and computational complexity. Also, we compare our proposed classification scheme with the k-nearest neighbor algorithm. Univariate and multivariate Gaussian and Laplace distributions, as well as generalized Gaussian distributions with variable shape parameter are each evaluated as a statistical model for the wavelet coefficients. The GD to the centroid outperforms the Euclidean distance and yields superior discrimination compared to the k-nearest neighbor approach

    Social Collaborative Retrieval

    Full text link
    Socially-based recommendation systems have recently attracted significant interest, and a number of studies have shown that social information can dramatically improve a system's predictions of user interests. Meanwhile, there are now many potential applications that involve aspects of both recommendation and information retrieval, and the task of collaborative retrieval---a combination of these two traditional problems---has recently been introduced. Successful collaborative retrieval requires overcoming severe data sparsity, making additional sources of information, such as social graphs, particularly valuable. In this paper we propose a new model for collaborative retrieval, and show that our algorithm outperforms current state-of-the-art approaches by incorporating information from social networks. We also provide empirical analyses of the ways in which cultural interests propagate along a social graph using a real-world music dataset.Comment: 10 page
    • ā€¦
    corecore