7,394 research outputs found

    Robust correlated and individual component analysis

    Get PDF
    © 1979-2012 IEEE.Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) thetemporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methodson these application domains, outperforming other state-of-the-art methods in the field

    Probabilistic Clustering of Time-Evolving Distance Data

    Full text link
    We present a novel probabilistic clustering model for objects that are represented via pairwise distances and observed at different time points. The proposed method utilizes the information given by adjacent time points to find the underlying cluster structure and obtain a smooth cluster evolution. This approach allows the number of objects and clusters to differ at every time point, and no identification on the identities of the objects is needed. Further, the model does not require the number of clusters being specified in advance -- they are instead determined automatically using a Dirichlet process prior. We validate our model on synthetic data showing that the proposed method is more accurate than state-of-the-art clustering methods. Finally, we use our dynamic clustering model to analyze and illustrate the evolution of brain cancer patients over time

    Encoding conformance checking artefacts in SAT

    Get PDF
    Conformance checking strongly relies on the computation of artefacts, which enable reasoning on the relation between observed and modeled behavior. This paper shows how important conformance artefacts like alignments, anti-alignments or even multi-alignments, defined over the edit distance, can be computed by encoding the problem as a SAT instance. From a general perspective, the work advocates for a unified family of techniques that can compute conformance artefacts in the same way. The prototype implementation of the techniques presented in this paper show capabilities for dealing with some of the current benchmarks, and potential for the near future when optimizations similar to the ones in the literature are incorporated.Peer ReviewedPostprint (author's final draft

    Kernel spectral clustering of large dimensional data

    Full text link
    This article proposes a first analysis of kernel spectral clustering methods in the regime where the dimension pp of the data vectors to be clustered and their number nn grow large at the same rate. We demonstrate, under a kk-class Gaussian mixture model, that the normalized Laplacian matrix associated with the kernel matrix asymptotically behaves similar to a so-called spiked random matrix. Some of the isolated eigenvalue-eigenvector pairs in this model are shown to carry the clustering information upon a separability condition classical in spiked matrix models. We evaluate precisely the position of these eigenvalues and the content of the eigenvectors, which unveil important (sometimes quite disruptive) aspects of kernel spectral clustering both from a theoretical and practical standpoints. Our results are then compared to the actual clustering performance of images from the MNIST database, thereby revealing an important match between theory and practice
    • …
    corecore