1,690 research outputs found

    Aspects of kernel based learning algorithms

    Get PDF

    Regularized principal manifolds

    No full text
    Many settings of unsupervised learning can be viewed as quantization problems - the minimization of the expected quantization error subject to some restrictions. This allows the use of tools such as regularization from the theory of (supervised) risk minimization for unsupervised learning. This setting turns out to be closely related to principal curves, the generative topographic map, and robust coding. We explore this connection in two ways: (1) we propose an algorithm for nding principal manifolds that can be regularized in a variety of ways; and (2) we derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give bounds on the covering numbers which allows us to obtain nearly optimal learning rates for certain types of regularization operators. Experimental results demonstrate the feasibility of the approach

    Learning Theory and Approximation

    Get PDF
    Learning theory studies data structures from samples and aims at understanding unknown function relations behind them. This leads to interesting theoretical problems which can be often attacked with methods from Approximation Theory. This workshop - the second one of this type at the MFO - has concentrated on the following recent topics: Learning of manifolds and the geometry of data; sparsity and dimension reduction; error analysis and algorithmic aspects, including kernel based methods for regression and classification; application of multiscale aspects and of refinement algorithms to learning

    Regularization in kernel learning

    Full text link
    Under mild assumptions on the kernel, we obtain the best known error rates in a regularized learning scenario taking place in the corresponding reproducing kernel Hilbert space (RKHS). The main novelty in the analysis is a proof that one can use a regularization term that grows significantly slower than the standard quadratic growth in the RKHS norm.Comment: Published in at http://dx.doi.org/10.1214/09-AOS728 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Covering numbers for support vector machines

    Full text link

    Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review

    Get PDF
    The paper characterizes classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage
    corecore