377 research outputs found

    Parameter switching in a generalized Duffing system: Finding the stable attractors

    Full text link
    This paper presents a simple periodic parameter-switching method which can find any stable limit cycle that can be numerically approximated in a generalized Duffing system. In this method, the initial value problem of the system is numerically integrated and the control parameter is switched periodically within a chosen set of parameter values. The resulted attractor matches with the attractor obtained by using the average of the switched values. The accurate match is verified by phase plots and Hausdorff distance measure in extensive simulations

    Theory of differential inclusions and its application in mechanics

    Full text link
    The following chapter deals with systems of differential equations with discontinuous right-hand sides. The key question is how to define the solutions of such systems. The most adequate approach is to treat discontinuous systems as systems with multivalued right-hand sides (differential inclusions). In this work three well-known definitions of solution of discontinuous system are considered. We will demonstrate the difference between these definitions and their application to different mechanical problems. Mathematical models of drilling systems with discontinuous friction torque characteristics are considered. Here, opposite to classical Coulomb symmetric friction law, the friction torque characteristic is asymmetrical. Problem of sudden load change is studied. Analytical methods of investigation of systems with such asymmetrical friction based on the use of Lyapunov functions are demonstrated. The Watt governor and Chua system are considered to show different aspects of computer modeling of discontinuous systems

    Non-Smooth Spatio-Temporal Coordinates in Nonlinear Dynamics

    Full text link
    This paper presents an overview of physical ideas and mathematical methods for implementing non-smooth and discontinuous substitutions in dynamical systems. General purpose of such substitutions is to bring the differential equations of motion to the form, which is convenient for further use of analytical and numerical methods of analyses. Three different types of nonsmooth transformations are discussed as follows: positional coordinate transformation, state variables transformation, and temporal transformations. Illustrating examples are provided.Comment: 15 figure

    SICONOS IST-2001-37172:deliverable D5.2 stability of non-smooth systems

    Get PDF

    Cone-like Invariant Manifolds for Nonsmooth Systems

    Get PDF
    This thesis deals with rigorous mathematical techniques for higher-dimensional nonsmooth systems and their applications. The dynamical behaviour of these systems is a nonlocal problem due to the lack of smoothness. Motivated by various examples of nonsmooth systems in applications, we propose to explore the concept of invariant surfaces in the phase space which is separated by a discontinuity hypersurface. For such systems the corresponding Poincaré map can be determined; it turns out that under suitable conditions an invariant cone occurs which is characterized by a fixed point of the Poincaré map. The invariant cone seems to serve in a similar way as a generalisation of the classical center manifold for smooth differential systems. Hence, the stability of the whole system can be reduced to investigate the stability on the two-dimensional surface of the cone. Motivated to study the generation of invariant cones out of smooth systems, a numerical procedure to establish invariant cones and their stability is presented. It has been found that the flat degenerate cone in a smooth system develops under nonsmooth perturbations into a cone-like configuration. Also a simple example is used to explain a paradoxical situation concerning stability. Theoretical results concerning the existence of invariant cones and possible mechanisms responsible for the observed behavior for general three dimensional nonsmooth systems are discussed. These investigations reveal that the system possesses a rich dynamic behavior and new phenomena such as, for instance, the existence of multiple invariant cones for such system. Our approach is developed to include the case when sliding motion takes place on the manifold. Sliding dynamical equations are formulated by using Filippov's method. Existence of invariant cones containing a segment of sliding orbits are given as well as stability on these cones. Different sliding bifurcation scenarios are treated by theoretical analysis and simulation. As an application we have investigated the dynamics of an automotive brake system model under the excitation of dry friction force which has served as a motivating example to develop our concepts. This model belongs to the class of nonsmooth systems of Filippov type which is investigated from direct crossing and a sliding motion point of view. Existence of invariant cones and different types of bifurcation phenomena such as sliding periodic doubling and multiple periodic orbits are observed. Finally, extensions to nonlinear perturbations of nonsmooth linear systems have been obtained by using the nonsmooth linear system as basic system. If the basic system possesses an attractive invariant cone without sliding motion, we have shown that locally the Poincaré map contains the necessary information with regard to attractivity of the invariant cone. The existence of a generalized center manifold reduction of nonlinear system has been proven by using Hadamard graph transformation approach. A class of nonlinear systems having a cone-like invariant "manifold" is presented to illustrate the center manifold reduction and associated bifurcation. The scientific contributions of parts of this thesis are presented in [32,39,66]

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function
    corecore