1,378 research outputs found

    Designing novel abstraction networks for ontology summarization and quality assurance

    Get PDF
    Biomedical ontologies are complex knowledge representation systems. Biomedical ontologies support interdisciplinary research, interoperability of medical systems, and Electronic Healthcare Record (EHR) encoding. Ontologies represent knowledge using concepts (entities) linked by relationships. Ontologies may contain hundreds of thousands of concepts and millions of relationships. For users, the size and complexity of ontologies make it difficult to comprehend “the big picture” of an ontology\u27s content. For ontology editors, size and complexity make it difficult to uncover errors and inconsistencies. Errors in an ontology will ultimately affect applications that utilize the ontology. In prior studies abstraction networks (AbNs) were developed to provide a compact summary of an ontology\u27s content and structure. AbNs have been shown to successfully support ontology summarization and quality assurance (QA), e.g., for SNOMED CT and NCIt. Despite the success of these previous studies, several major, unaddressed issues affect the applicability and usability of AbNs. This thesis is broken into five major parts, each addressing one issue. The first part of this dissertation addresses the scalability of AbN-based QA techniques to large SNOMED CT hierarchies. Previous studies focused on relatively small hierarchies. The QA techniques developed for these small hierarchies do not scale to large hierarchies, e.g., Procedure and Clinical finding. A new type of AbN, called a subtaxonomy, is introduced to address this problem. Subtaxonomies summarize a subset of an ontology\u27s content. Several types of subtaxonomies and subtaxonomy-based QA studies are discussed. The second part of this dissertation addresses the need for summarization and QA methods for the twelve SNOMED CT hierarchies with no lateral relationships. Previously developed SNOMED CT AbN derivation methodologies, which require lateral relationships, cannot be applied to these hierarchies. The Tribal Abstraction Network (TAN) is a new type of AbN derived using only hierarchical relationships. A TAN-based QA methodology is introduced and the results of a QA review of the Observable entity hierarchy are reported. The third part focuses on the development of generic AbN derivation methods that are applicable to groups of structurally similar ontologies, e.g., those developed in the Web Ontology Language (OWL) format. Previously, AbN derivation techniques were applicable to only a single ontology at a time. AbNs that are applicable to many OWL ontologies are introduced, a preliminary study on OWL AbN granularity is reported on, and the results of several QA studies are presented. The fourth part describes Diff Abstraction Networks, which summarize and visualize the structural differences between two ontology releases. Diff Area Taxonomy and Diff Partial-area Taxonomy derivation methodologies are introduced and Diff Partial-area taxonomies are derived for three OWL ontologies. The Diff Abstraction Network approach is compared to the traditional ontology diff approach. Lastly, tools for deriving and visualizing AbNs are described. The Biomedical Layout Utility Framework is introduced to support the automatic creation, visualization, and exploration of abstraction networks for SNOMED CT and OWL ontologies

    NSeq: a multithreaded Java application for finding positioned nucleosomes from sequencing data

    Get PDF
    We introduce NSeq, a fast and efficient Java application for finding positioned nucleosomes from the high-throughput sequencing of MNase-digested mononucleosomal DNA. NSeq includes a user-friendly graphical interface, computes false discovery rates (FDRs) for candidate nucleosomes from Monte Carlo simulations, plots nucleosome coverage and centers, and exploits the availability of multiple processor cores by parallelizing its computations. Java binaries and source code are freely available at https://github.com/songlab/NSeq. The software is supported on all major platforms equipped with Java Runtime Environment 6 or later

    Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

    Full text link
    Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.Comment: Accepted for publication in Nature Communication

    Multipartite Graph Algorithms for the Analysis of Heterogeneous Data

    Get PDF
    The explosive growth in the rate of data generation in recent years threatens to outpace the growth in computer power, motivating the need for new, scalable algorithms and big data analytic techniques. No field may be more emblematic of this data deluge than the life sciences, where technologies such as high-throughput mRNA arrays and next generation genome sequencing are routinely used to generate datasets of extreme scale. Data from experiments in genomics, transcriptomics, metabolomics and proteomics are continuously being added to existing repositories. A goal of exploratory analysis of such omics data is to illuminate the functions and relationships of biomolecules within an organism. This dissertation describes the design, implementation and application of graph algorithms, with the goal of seeking dense structure in data derived from omics experiments in order to detect latent associations between often heterogeneous entities, such as genes, diseases and phenotypes. Exact combinatorial solutions are developed and implemented, rather than relying on approximations or heuristics, even when problems are exceedingly large and/or difficult. Datasets on which the algorithms are applied include time series transcriptomic data from an experiment on the developing mouse cerebellum, gene expression data measuring acute ethanol response in the prefrontal cortex, and the analysis of a predicted protein-protein interaction network. A bipartite graph model is used to integrate heterogeneous data types, such as genes with phenotypes and microbes with mouse strains. The techniques are then extended to a multipartite algorithm to enumerate dense substructure in multipartite graphs, constructed using data from three or more heterogeneous sources, with applications to functional genomics. Several new theoretical results are given regarding multipartite graphs and the multipartite enumeration algorithm. In all cases, practical implementations are demonstrated to expand the frontier of computational feasibility

    Computational models of gene expression regulation

    Get PDF
    Throughout the last several decades, many efforts have been put into elucidating the genetic or epigenetic defects that result in various diseases. Gene regulation, i.e., the process of how genes are turned on and off in the right place and at the right time, is a paramount and prevailing question for researchers. Thanks to the discoveries made by researchers in this field, our understanding of interactions between proteins and DNA or proteins with themselves, as well as the dynamics of chromatin structure under different conditions, have substantially advanced. Even though there has been a lot achieved through these discoveries, there are still many unknown aspects about gene regulation. For instance, proteins called transcription factors (TFs) recognize and bind to specific regions of DNA and recruit the transcriptional machinery, which is essential for gene regulation. As there have been more than 2000 TFs identified in the human genome, it is important to study where they bind to or which genes they target. Computational approaches are important, in particular, as the biological experiments are often very expensive and cannot be done for all TFs. In 2016, a competition named DREAM Challenge was held encouraging researchers to develop novel computational tools for predicting the binding sites of several TFs. The first chapter of this thesis describes our machine learning approach to address this challenge within the scope of the competition. Using ensembles of random forest classifiers, we formulated our framework such that it is able to benefit from the tissue specificity inherent in the data leading to better generalization. Also, our models were tailored for spotting cofactors involved in the binding of TFs of interest. Comparing the important TFs that our computational models suggested with protein-protein association networks revealed that the models preferentially select motifs of TFs that are potential interaction partners in those networks. Another important aspect beyond predicting TF binding is to link epigeneomics, such as histone modification (HM) data, with gene expression. We, particularly, concentrated on predicting expression in a subset of genes called bidirectional. Bidirectional genes are referred to as pairs of genes that are located on opposite strands of DNA close to each other. As the sequencing technologies advance, more such bidirectional configurations are being detected. This indicates that in order to understand the gene regulatory mechanisms, it would be beneficial to account for such promoter architectures. In the second and third chapters, we focused on genes having bidirectional promoter architectures utilizing high resolution epigenomic signatures and single cell RNA-seq data to dissect the complex epigenetic architecture at these promoters. Using single-cell RNA-seq data as the estimate of gene expression, we were able to generate a hypothetical model for gene regulation in bidirectional promoters. We showed that bidirectional promoters can be categorized into three architecture types with distinct characteristics. Each of these categories corresponds to a unique gene expression profile at single cell level. The single cell RNA-seq data proved to be a powerful means for studying gene regulation. Therefore, in the last chapter, we proposed a novel approach for predicting gene expression at the single cell level using cis-regulatory motifs as well as epigenetic features. To achieve this, we designed a tree-guided multi-task learning framework that considers each cell as a task. Through this framework we were able to explain the single cell gene expression values using either TF binding affinities or TF ChIP-seq data measured at specific genomic regions. This allowed us to identify distinct TFs that show cell-type specific regulation in induced pluripotent stem cells. Our approach does not only limit to TFs, rather it can take any type of data that can potentially be used in explaining gene expression at single cell level. We believe that our findings can be used in drug discovery and development that can regulate the presence of TFs or other regulatory factors, which lead the cell fate into abnormal states, to prevent or cure diseases.In den letzten Jahrzehnten wurden große Anstrengungen unternommen, um die genetischen oder epigenetischen Defekte aufzuklären, die zu verschiedenen Krankheiten führen. Die Genregulation, d.h. der Prozess der Ein- und Abschaltung der Gene am richtigen Ort und zur richtigen Zeit reguliert, ist für die Forscher eine Frage von zentraler Bedeutung. Dank der Entdeckungen von Forschern auf diesem Gebiet ist unser Verständnis der Wechselwirkungen zwischen zwischen den Proteinen und der DNA oder der Proteine untereinander sowie der Dynamik der Chromatinstruktur unter verschiedenen Bedingungen wesentlich fortgeschritten. Obwohl durch diese Entdeckungen viel erreicht wurde, gibt es noch viele unbekannte Aspekte der Genregulation. Beispielsweise erkennen Proteine, sogenannte Transkriptionsfaktoren (Transcription Factors, TFs), bestimmte Bereiche der DNA und binden an diese und rekrutieren die Transkriptionsmaschinerie, die für die Genregulation erforderlich ist. Da mehr als 2000 TFs im menschlichen Genom identifiziert wurden, ist es wichtig zu untersuchen, wo sie binden oder auf welche Gene sie abzielen. Rechnerische Ansätze sind insbesondere wichtig, da die biologischen Experimente oft sehr teuer sind und nicht für alle TFs durchgeführt werden können. Im Jahr 2016 fand ein Wettbewerb namens DREAM Challenge statt, bei dem Forscher aufgefordert wurden, neuartige Rechenwerkzeuge zur Vorhersage der Bindungsstellen mehrerer TFs zu entwickeln. Das erste Kapitel dieser Arbeit beschreibt unseren Ansatz des maschinellen Lernens, um diese Herausforderung im Rahmen des Wettbewerbs anzugehen. Unter Verwendung von Ensembles von Random Forest Klassifikatoren haben wir unser Framework so formuliert, dass es von der Gewebespezifität der Daten profitiert und damit zu einer besseren Generalisierung führt. Außerdem wurden unsere Modelle auf das Erkennen von Kofaktoren angepasst, die an der Bindung von TFs beteiligt sind, die für uns von Interesse sind. Der Vergleich der wichtigen TFs, die unsere Computermodelle mit Protein-Protein-Assoziationsnetzwerken vorschlugen, ergab, dass die Modelle bevorzugt Motive von TFs auswählen, die potenzielle Interaktionspartner in diesen Netzwerken sind. Ein weiterer wichtiger Aspekt, der über die Vorhersage der TF-Bindung hinausgeht, besteht darin, epigeneomische Faktoren wie Histonmodifikationsdaten (HM-Daten) mit der Genexpression zu verknüpfen. Wir konzentrierten uns insbesondere auf die Vorhersage der Expression in einer Untergruppe von Genen, die als bidirektional bezeichnet werden. Bidirektionale Gene werden als Paare von Genen bezeichnet, die sich auf gegenüberliegenden DNA-Strängen befinden und nahe beieinander liegen. Mit dem Fortschritt der Sequenzierungstechnologien werden immer mehr solche bidirektionalen Konfigurationen erkannt. Dies weist darauf hin, dass es zum Verständnis der Genregulationsmechanismen vorteilhaft wäre, solche Promotorarchitekturen zu berücksichtigen. Im zweiten und dritten Kapitel konzentrierten wir uns auf Gene mit bidirektionalen Promotorarchitekturen, um mit Hilfe von epigenomischen Signaturen und Einzelzell-RNA-Sequenzdaten die komplexe epigenetische Architektur an diesen Promotoren zu analysieren. Unter Verwendung von Einzelzell-RNA-Sequenzdaten als Schätzung der Genexpression konnten wir ein hypothetisches Modell für die Genregulation in bidirektionalen Promotoren aufstellen. Wir haben gezeigt, dass bidirektionale Promotoren in drei Architekturtypen mit unterschiedlichen Merkmalen eingeteilt werden können. Jede dieser Kategorien entspricht einem eindeutigen Genexpressionsprofil auf Einzelzellebene. Die Einzelzell-RNA-Sequenzdaten erwiesen sich als leistungsstarkes Mittel zur Untersuchung der Genregulation. Daher haben wir im letzten Kapitel einen neuen Ansatz zur Vorhersage der Genexpression auf Einzelzellebene unter Verwendung von cis-regulatorischen Motiven sowie epigenetischen Merkmalen vorgeschlagen. Um dies zu erreichen, haben wir ein baumgesteuertes Multitasking-Lernsystem entwickelt, das jede Zelle als eine Aufgabe betrachtet. Durch dieses Gerüst konnten wir die Einzelzellgenexpressionswerte entweder mit TF-Bindungsaffinitäten oder mit TF-ChIP-Sequenzdaten erklären, die in bestimmten Genomregionen gemessen wurden. Dies ermöglichte es uns, verschiedene TFs zu identifizieren, die eine zelltypspezifische Regulation in induzierten pluripotenten Stammzellen zeigen. Unser Ansatz beschränkt sich nicht nur auf TFs, sondern kann jede Art von Daten verwenden, die potentiell zur Erklärung der Genexpression auf Einzelzellebene verwendet werden können. Wir glauben, dass unsere Erkenntnisse für die Entdeckung und Entwicklung von Arzneimitteln verwendet werden können, die das Vorhandensein von TFs oder anderen regulatorischen Faktoren regulieren können, die die Zellen abnormal werden lassen, um Krankheiten zu verhindern oder zu heilen
    corecore