20,545 research outputs found

    Image Augmentation using Radial Transform for Training Deep Neural Networks

    Full text link
    Deep learning models have a large number of free parameters that must be estimated by efficient training of the models on a large number of training data samples to increase their generalization performance. In real-world applications, the data available to train these networks is often limited or imbalanced. We propose a sampling method based on the radial transform in a polar coordinate system for image augmentation to facilitate the training of deep learning models from limited source data. This pixel-wise transform provides representations of the original image in the polar coordinate system by generating a new image from each pixel. This technique can generate radial transformed images up to the number of pixels in the original image to increase the diversity of poorly represented image classes. Our experiments show improved generalization performance in training deep convolutional neural networks with radial transformed images.Comment: This paper is accepted for presentation at IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE ICASSP), 201

    A hybrid approach to black hole perturbations from extended matter sources

    Get PDF
    We present a new method for the calculation of black hole perturbations induced by extended sources in which the solution of the nonlinear hydrodynamics equations is coupled to a perturbative method based on Regge-Wheeler/Zerilli and Bardeen-Press-Teukolsky equations when these are solved in the frequency domain. In contrast to alternative methods in the time domain which may be unstable for rotating black-hole spacetimes, this approach is expected to be stable as long as an accurate evolution of the matter sources is possible. Hence, it could be used under generic conditions and also with sources coming from three-dimensional numerical relativity codes. As an application of this method we compute the gravitational radiation from an oscillating high-density torus orbiting around a Schwarzschild black hole and show that our method is remarkably accurate, capturing both the basic quadrupolar emission of the torus and the excited emission of the black hole.Comment: 12 pages, 4 figures. Phys. Rev. D, in pres

    An Itzykson-Zuber-like Integral and Diffusion for Complex Ordinary and Supermatrices

    Full text link
    We compute an analogue of the Itzykson-Zuber integral for the case of arbitrary complex matrices. The calculation is done for both ordinary and supermatrices by transferring the Itzykson-Zuber diffusion equation method to the space of arbitrary complex matrices. The integral is of interest for applications in Quantum Chromodynamics and the theory of two-dimensional Quantum Gravity.Comment: 20 pages, RevTeX, no figures, agrees with published version, including "Note added in proof" with an additional result for rectangular supermatrice

    Noneuclidean Tessellations and their relation to Reggie Trajectories

    Full text link
    The coefficients in the confluent hypergeometric equation specify the Regge trajectories and the degeneracy of the angular momentum states. Bound states are associated with real angular momenta while resonances are characterized by complex angular momenta. With a centrifugal potential, the half-plane is tessellated by crescents. The addition of an electrostatic potential converts it into a hydrogen atom, and the crescents into triangles which may have complex conjugate angles; the angle through which a rotation takes place is accompanied by a stretching. Rather than studying the properties of the wave functions themselves, we study their symmetry groups. A complex angle indicates that the group contains loxodromic elements. Since the domain of such groups is not the disc, hyperbolic plane geometry cannot be used. Rather, the theory of the isometric circle is adapted since it treats all groups symmetrically. The pairing of circles and their inverses is likened to pairing particles with their antiparticles which then go one to produce nested circles, or a proliferation of particles. A corollary to Laguerre's theorem, which states that the euclidean angle is represented by a pure imaginary projective invariant, represents the imaginary angle in the form of a real projective invariant.Comment: 27 pages, 4 figure

    Classical dynamics on curved Snyder space

    Full text link
    We study the classical dynamics of a particle in nonrelativistic Snyder-de Sitter space. We show that for spherically symmetric systems, parametrizing the solutions in terms of an auxiliary time variable, which is a function only of the physical time and of the energy and angular momentum of the particles, one can reduce the problem to the equivalent one in classical mechanics. We also discuss a relativistic extension of these results, and a generalization to the case in which the algebra is realized in flat space.Comment: 12 pages, LaTeX, version published on CQ
    • …
    corecore