282 research outputs found

    Sound Source Localization in a Multipath Environment Using Convolutional Neural Networks

    Full text link
    The propagation of sound in a shallow water environment is characterized by boundary reflections from the sea surface and sea floor. These reflections result in multiple (indirect) sound propagation paths, which can degrade the performance of passive sound source localization methods. This paper proposes the use of convolutional neural networks (CNNs) for the localization of sources of broadband acoustic radiated noise (such as motor vessels) in shallow water multipath environments. It is shown that CNNs operating on cepstrogram and generalized cross-correlogram inputs are able to more reliably estimate the instantaneous range and bearing of transiting motor vessels when the source localization performance of conventional passive ranging methods is degraded. The ensuing improvement in source localization performance is demonstrated using real data collected during an at-sea experiment.Comment: 5 pages, 5 figures, Final draft of paper submitted to 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 15-20 April 2018 in Calgary, Alberta, Canada. arXiv admin note: text overlap with arXiv:1612.0350

    Raking the Cocktail Party

    Get PDF
    We present the concept of an acoustic rake receiver---a microphone beamformer that uses echoes to improve the noise and interference suppression. The rake idea is well-known in wireless communications; it involves constructively combining different multipath components that arrive at the receiver antennas. Unlike spread-spectrum signals used in wireless communications, speech signals are not orthogonal to their shifts. Therefore, we focus on the spatial structure, rather than temporal. Instead of explicitly estimating the channel, we create correspondences between early echoes in time and image sources in space. These multiple sources of the desired and the interfering signal offer additional spatial diversity that we can exploit in the beamformer design. We present several "intuitive" and optimal formulations of acoustic rake receivers, and show theoretically and numerically that the rake formulation of the maximum signal-to-interference-and-noise beamformer offers significant performance boosts in terms of noise and interference suppression. Beyond signal-to-noise ratio, we observe gains in terms of the \emph{perceptual evaluation of speech quality} (PESQ) metric for the speech quality. We accompany the paper by the complete simulation and processing chain written in Python. The code and the sound samples are available online at \url{http://lcav.github.io/AcousticRakeReceiver/}.Comment: 12 pages, 11 figures, Accepted for publication in IEEE Journal on Selected Topics in Signal Processing (Special Issue on Spatial Audio

    Neural Network-Based DOA Estimation in the Presence of Non-Gaussian Interference

    Full text link
    This work addresses the problem of direction-of-arrival (DOA) estimation in the presence of non-Gaussian, heavy-tailed, and spatially-colored interference. Conventionally, the interference is considered to be Gaussian-distributed and spatially white. However, in practice, this assumption is not guaranteed, which results in degraded DOA estimation performance. Maximum likelihood DOA estimation in the presence of non-Gaussian and spatially colored interference is computationally complex and not practical. Therefore, this work proposes a neural network (NN) based DOA estimation approach for spatial spectrum estimation in multi-source scenarios with a-priori unknown number of sources in the presence of non-Gaussian spatially-colored interference. The proposed approach utilizes a single NN instance for simultaneous source enumeration and DOA estimation. It is shown via simulations that the proposed approach significantly outperforms conventional and NN-based approaches in terms of probability of resolution, estimation accuracy, and source enumeration accuracy in conditions of low SIR, small sample support, and when the angular separation between the source DOAs and the spatially-colored interference is small.Comment: Submitted to IEEE Transactions on Aerospace and Electronic System

    Exploiting CNNs for Improving Acoustic Source Localization in Noisy and Reverberant Conditions

    Get PDF
    This paper discusses the application of convolutional neural networks (CNNs) to minimum variance distortionless response localization schemes. We investigate the direction of arrival estimation problems in noisy and reverberant conditions using a uniform linear array (ULA). CNNs are used to process the multichannel data from the ULA and to improve the data fusion scheme, which is performed in the steered response power computation. CNNs improve the incoherent frequency fusion of the narrowband response power by weighting the components, reducing the deleterious effects of those components affected by artifacts due to noise and reverberation. The use of CNNs avoids the necessity of previously encoding the multichannel data into selected acoustic cues with the advantage to exploit its ability in recognizing geometrical pattern similarity. Experiments with both simulated and real acoustic data demonstrate the superior localization performance of the proposed SRP beamformer with respect to other state-of-the-art techniques

    FPGA-based architectures for acoustic beamforming with microphone arrays : trends, challenges and research opportunities

    Get PDF
    Over the past decades, many systems composed of arrays of microphones have been developed to satisfy the quality demanded by acoustic applications. Such microphone arrays are sound acquisition systems composed of multiple microphones used to sample the sound field with spatial diversity. The relatively recent adoption of Field-Programmable Gate Arrays (FPGAs) to manage the audio data samples and to perform the signal processing operations such as filtering or beamforming has lead to customizable architectures able to satisfy the most demanding computational, power or performance acoustic applications. The presented work provides an overview of the current FPGA-based architectures and how FPGAs are exploited for different acoustic applications. Current trends on the use of this technology, pending challenges and open research opportunities on the use of FPGAs for acoustic applications using microphone arrays are presented and discussed

    EEG Source Localization: A Machine Learning Approach

    Get PDF
    Inimaju aktiivsuse salvestamise jaoks on olemas mitmeid meetodeid. Üks nendest on EEG, mis suudab ajusignaali mõõta peaaegu samal hetkel, kui see signaal ajus tekib.Samas selle ruumiline täpsus on väga madal. Konkureeriv tehnoloogia on fMRI, mille ruumiline täpsus on hea, kuid ajaline täpsus madal. Mõõtes ajusignaale kasutades mõlemat tehnoloogiat korraga saab kätte signaali, mis on rikas ja täpne aju aktiivsuse kirjeldus nii ruumis kui ka ajas. Signaali allika järeldamist EEG andmetest nimetatakse allika lokaliseerimise probleemiks. Antud uuringus me demonstreerime uut lokaliseerimise meetodit, mis kasutab masinõpet. Uue meetodi suutlikkuse hindamiseks kasutame andmestikku, kus EEG ja fMRI signaalid olid salvestatud samaaegselt. Samuti võrdleme antud töös väljatöötatud meetodit teiste allika lokaliseerimise meetoditega.There are different techniques for recording human brain activity. One of them EEG can capture brain activity in the time frame at which the activity occurs, but has a poor spatial resolution. Another technology fMRI, captures brain activity with high spatial resolution compared to EEG, but with poor temporal resolution. Simultaneously recording brain activity using these two techniques helps us capture a richer, spatio-temporally more precise description of human brain activity. Inferring the source location within the brain from an EEG signal is defined as EEG source localization problem. In this thesis, a new method that is based on machine learning for solving EEG source localization problem isproposed and its performance is evaluated on a simultaneously recorded EEG and fMRIdata set. This method’s performance is also compared to a commonly used method

    Magnetoencephalography

    Get PDF
    This is a practical book on MEG that covers a wide range of topics. The book begins with a series of reviews on the use of MEG for clinical applications, the study of cognitive functions in various diseases, and one chapter focusing specifically on studies of memory with MEG. There are sections with chapters that describe source localization issues, the use of beamformers and dipole source methods, as well as phase-based analyses, and a step-by-step guide to using dipoles for epilepsy spike analyses. The book ends with a section describing new innovations in MEG systems, namely an on-line real-time MEG data acquisition system, novel applications for MEG research, and a proposal for a helium re-circulation system. With such breadth of topics, there will be a chapter that is of interest to every MEG researcher or clinician
    corecore