2,451 research outputs found

    A Model-Based Approach to Managing Feature Binding Time in Software Product Line Engineering

    Get PDF
    Software Product Line Engineering (SPLE) is a software reuse paradigm for developing software products, from managed reusable assets, based on analysis of commonality and variability (C & V) of a product line. Many approaches of SPLE use a feature as a key abstraction to capture the C&V. Recently, there have been increasing demands for the provision of flexibility about not only the variability of features but also the variability of when features should be selected (i.e., variability on feature binding times). Current approaches to support variations of feature binding time mostly focused on ad hoc implementation mechanisms. In this paper, we first identify the challenges of feature binding time management and then propose an approach to analyze the variation of feature binding times and use the results to specify model-based architectural components for the product line. Based on the specification, components implementing variable features are parameterized with the binding times and the source codes for the components and the connection between them are generated

    Balancing generality and specificity in component-based reuse

    Get PDF
    For a component industry to be successful, we must move beyond the current techniques of black box reuse and genericity to a more flexible framework supporting customization of components as well as instantiation and composition of components. Customization of components strikes a balanced between creating dozens of variations of a base component and requiring the overhead of unnecessary features of an 'everything but the kitchen sink' component. We argue that design and instantiation of reusable components have competing criteria - design-for-use strives for generality, design-with-reuse strives for specificity - and that providing mechanisms for each can be complementary rather than antagonistic. In particular, we demonstrate how program slicing techniques can be applied to customization of reusable components

    On Verifying Complex Properties using Symbolic Shape Analysis

    Get PDF
    One of the main challenges in the verification of software systems is the analysis of unbounded data structures with dynamic memory allocation, such as linked data structures and arrays. We describe Bohne, a new analysis for verifying data structures. Bohne verifies data structure operations and shows that 1) the operations preserve data structure invariants and 2) the operations satisfy their specifications expressed in terms of changes to the set of objects stored in the data structure. During the analysis, Bohne infers loop invariants in the form of disjunctions of universally quantified Boolean combinations of formulas. To synthesize loop invariants of this form, Bohne uses a combination of decision procedures for Monadic Second-Order Logic over trees, SMT-LIB decision procedures (currently CVC Lite), and an automated reasoner within the Isabelle interactive theorem prover. This architecture shows that synthesized loop invariants can serve as a useful communication mechanism between different decision procedures. Using Bohne, we have verified operations on data structures such as linked lists with iterators and back pointers, trees with and without parent pointers, two-level skip lists, array data structures, and sorted lists. We have deployed Bohne in the Hob and Jahob data structure analysis systems, enabling us to combine Bohne with analyses of data structure clients and apply it in the context of larger programs. This report describes the Bohne algorithm as well as techniques that Bohne uses to reduce the ammount of annotations and the running time of the analysis

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    ATLAS: A flexible and extensible architecture for linguistic annotation

    Full text link
    We describe a formal model for annotating linguistic artifacts, from which we derive an application programming interface (API) to a suite of tools for manipulating these annotations. The abstract logical model provides for a range of storage formats and promotes the reuse of tools that interact through this API. We focus first on ``Annotation Graphs,'' a graph model for annotations on linear signals (such as text and speech) indexed by intervals, for which efficient database storage and querying techniques are applicable. We note how a wide range of existing annotated corpora can be mapped to this annotation graph model. This model is then generalized to encompass a wider variety of linguistic ``signals,'' including both naturally occuring phenomena (as recorded in images, video, multi-modal interactions, etc.), as well as the derived resources that are increasingly important to the engineering of natural language processing systems (such as word lists, dictionaries, aligned bilingual corpora, etc.). We conclude with a review of the current efforts towards implementing key pieces of this architecture.Comment: 8 pages, 9 figure
    • …
    corecore