59 research outputs found

    On the benefits of defining vicinal distributions in latent space

    Get PDF
    The vicinal risk minimization (VRM) principle is an empirical risk minimization (ERM) variant that replaces Dirac masses with vicinal functions. There is strong numerical and theoretical evidence showing that VRM outperforms ERM in terms of generalization if appropriate vicinal functions are chosen. Mixup Training (MT), a popular choice of vicinal distribution, improves the generalization performance of models by introducing globally linear behavior in between training examples. Apart from generalization, recent works have shown that mixup trained models are relatively robust to input perturbations/corruptions and at the same time are calibrated better than their non-mixup counterparts. In this work, we investigate the benefits of defining these vicinal distributions like mixup in latent space of generative models rather than in input space itself. We propose a new approach - \textit{VarMixup (Variational Mixup)} - to better sample mixup images by using the latent manifold underlying the data. Our empirical studies on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that models trained by performing mixup in the latent manifold learned by VAEs are inherently more robust to various input corruptions/perturbations, are significantly better calibrated, and exhibit more local-linear loss landscapes.Comment: Accepted at Elsevier Pattern Recognition Letters (2021), Best Paper Award at CVPR 2021 Workshop on Adversarial Machine Learning in Real-World Computer Vision (AML-CV), Also accepted at ICLR 2021 Workshops on Robust-Reliable Machine Learning (Oral) and Generalization beyond the training distribution (Abstract

    AdaER: An Adaptive Experience Replay Approach for Continual Lifelong Learning

    Full text link
    Continual lifelong learning is an machine learning framework inspired by human learning, where learners are trained to continuously acquire new knowledge in a sequential manner. However, the non-stationary nature of streaming training data poses a significant challenge known as catastrophic forgetting, which refers to the rapid forgetting of previously learned knowledge when new tasks are introduced. While some approaches, such as experience replay (ER), have been proposed to mitigate this issue, their performance remains limited, particularly in the class-incremental scenario which is considered natural and highly challenging. In this paper, we present a novel algorithm, called adaptive-experience replay (AdaER), to address the challenge of continual lifelong learning. AdaER consists of two stages: memory replay and memory update. In the memory replay stage, AdaER introduces a contextually-cued memory recall (C-CMR) strategy, which selectively replays memories that are most conflicting with the current input data in terms of both data and task. Additionally, AdaER incorporates an entropy-balanced reservoir sampling (E-BRS) strategy to enhance the performance of the memory buffer by maximizing information entropy. To evaluate the effectiveness of AdaER, we conduct experiments on established supervised continual lifelong learning benchmarks, specifically focusing on class-incremental learning scenarios. The results demonstrate that AdaER outperforms existing continual lifelong learning baselines, highlighting its efficacy in mitigating catastrophic forgetting and improving learning performance.Comment: 18 pages, 26 figure

    G-Mix: A Generalized Mixup Learning Framework Towards Flat Minima

    Full text link
    Deep neural networks (DNNs) have demonstrated promising results in various complex tasks. However, current DNNs encounter challenges with over-parameterization, especially when there is limited training data available. To enhance the generalization capability of DNNs, the Mixup technique has gained popularity. Nevertheless, it still produces suboptimal outcomes. Inspired by the successful Sharpness-Aware Minimization (SAM) approach, which establishes a connection between the sharpness of the training loss landscape and model generalization, we propose a new learning framework called Generalized-Mixup, which combines the strengths of Mixup and SAM for training DNN models. The theoretical analysis provided demonstrates how the developed G-Mix framework enhances generalization. Additionally, to further optimize DNN performance with the G-Mix framework, we introduce two novel algorithms: Binary G-Mix and Decomposed G-Mix. These algorithms partition the training data into two subsets based on the sharpness-sensitivity of each example to address the issue of "manifold intrusion" in Mixup. Both theoretical explanations and experimental results reveal that the proposed BG-Mix and DG-Mix algorithms further enhance model generalization across multiple datasets and models, achieving state-of-the-art performance.Comment: 19 pages, 23 figure

    Reweighted Mixup for Subpopulation Shift

    Full text link
    Subpopulation shift exists widely in many real-world applications, which refers to the training and test distributions that contain the same subpopulation groups but with different subpopulation proportions. Ignoring subpopulation shifts may lead to significant performance degradation and fairness concerns. Importance reweighting is a classical and effective way to handle the subpopulation shift. However, recent studies have recognized that most of these approaches fail to improve the performance especially when applied to over-parameterized neural networks which are capable of fitting any training samples. In this work, we propose a simple yet practical framework, called reweighted mixup (RMIX), to mitigate the overfitting issue in over-parameterized models by conducting importance weighting on the ''mixed'' samples. Benefiting from leveraging reweighting in mixup, RMIX allows the model to explore the vicinal space of minority samples more, thereby obtaining more robust model against subpopulation shift. When the subpopulation memberships are unknown, the training-trajectories-based uncertainty estimation is equipped in the proposed RMIX to flexibly characterize the subpopulation distribution. We also provide insightful theoretical analysis to verify that RMIX achieves better generalization bounds over prior works. Further, we conduct extensive empirical studies across a wide range of tasks to validate the effectiveness of the proposed method.Comment: Journal version of arXiv:2209.0892

    MixupE: Understanding and Improving Mixup from Directional Derivative Perspective

    Full text link
    Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpolating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. Based on this new insight, we propose an improved version of Mixup, theoretically justified to deliver better generalization performance than the vanilla Mixup. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across multiple datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.Comment: 16 pages, Best Student Paper Award at UAI 202

    Automatic Data Augmentation via Invariance-Constrained Learning

    Full text link
    Underlying data structures, such as symmetries or invariances to transformations, are often exploited to improve the solution of learning tasks. However, embedding these properties in models or learning algorithms can be challenging and computationally intensive. Data augmentation, on the other hand, induces these symmetries during training by applying multiple transformations to the input data. Despite its ubiquity, its effectiveness depends on the choices of which transformations to apply, when to do so, and how often. In fact, there is both empirical and theoretical evidence that the indiscriminate use of data augmentation can introduce biases that outweigh its benefits. This work tackles these issues by automatically adapting the data augmentation while solving the learning task. To do so, it formulates data augmentation as an invariance-constrained learning problem and leverages Monte Carlo Markov Chain (MCMC) sampling to solve it. The result is a practical algorithm that not only does away with a priori searches for augmentation distributions, but also dynamically controls if and when data augmentation is applied. Our experiments illustrate the performance of this method, which achieves state-of-the-art results in automatic data augmentation benchmarks for CIFAR datasets. Furthermore, this approach can be used to gather insights on the actual symmetries underlying a learning task

    LongReMix: Robust Learning with High Confidence Samples in a Noisy Label Environment

    Full text link
    Deep neural network models are robust to a limited amount of label noise, but their ability to memorise noisy labels in high noise rate problems is still an open issue. The most competitive noisy-label learning algorithms rely on a 2-stage process comprising an unsupervised learning to classify training samples as clean or noisy, followed by a semi-supervised learning that minimises the empirical vicinal risk (EVR) using a labelled set formed by samples classified as clean, and an unlabelled set with samples classified as noisy. In this paper, we hypothesise that the generalisation of such 2-stage noisy-label learning methods depends on the precision of the unsupervised classifier and the size of the training set to minimise the EVR. We empirically validate these two hypotheses and propose the new 2-stage noisy-label training algorithm LongReMix. We test LongReMix on the noisy-label benchmarks CIFAR-10, CIFAR-100, WebVision, Clothing1M, and Food101-N. The results show that our LongReMix generalises better than competing approaches, particularly in high label noise problems. Furthermore, our approach achieves state-of-the-art performance in most datasets. The code will be available upon paper acceptance

    Estimating Input Coefficients for Regional Input-Output Tables Using Deep Learning with Mixup

    Full text link
    An input-output table is an important data for analyzing the economic situation of a region. Generally, the input-output table for each region (regional input-output table) in Japan is not always publicly available, so it is necessary to estimate the table. In particular, various methods have been developed for estimating input coefficients, which are an important part of the input-output table. Currently, non-survey methods are often used to estimate input coefficients because they require less data and computation, but these methods have some problems, such as discarding information and requiring additional data for estimation. In this study, the input coefficients are estimated by approximating the generation process with an artificial neural network (ANN) to mitigate the problems of the non-survey methods and to estimate the input coefficients with higher precision. To avoid over-fitting due to the small data used, data augmentation, called mixup, is introduced to increase the data size by generating virtual regions through region composition and scaling. By comparing the estimates of the input coefficients with those of Japan as a whole, it is shown that the accuracy of the method of this research is higher and more stable than that of the conventional non-survey methods. In addition, the estimated input coefficients for the three cities in Japan are generally close to the published values for each city.Comment: 24 pages, 7 postscript figure
    corecore