37,062 research outputs found

    Paradoxes in Fair Computer-Aided Decision Making

    Full text link
    Computer-aided decision making--where a human decision-maker is aided by a computational classifier in making a decision--is becoming increasingly prevalent. For instance, judges in at least nine states make use of algorithmic tools meant to determine "recidivism risk scores" for criminal defendants in sentencing, parole, or bail decisions. A subject of much recent debate is whether such algorithmic tools are "fair" in the sense that they do not discriminate against certain groups (e.g., races) of people. Our main result shows that for "non-trivial" computer-aided decision making, either the classifier must be discriminatory, or a rational decision-maker using the output of the classifier is forced to be discriminatory. We further provide a complete characterization of situations where fair computer-aided decision making is possible

    A General Approach for Predicting the Behavior of the Supreme Court of the United States

    Full text link
    Building on developments in machine learning and prior work in the science of judicial prediction, we construct a model designed to predict the behavior of the Supreme Court of the United States in a generalized, out-of-sample context. To do so, we develop a time evolving random forest classifier which leverages some unique feature engineering to predict more than 240,000 justice votes and 28,000 cases outcomes over nearly two centuries (1816-2015). Using only data available prior to decision, our model outperforms null (baseline) models at both the justice and case level under both parametric and non-parametric tests. Over nearly two centuries, we achieve 70.2% accuracy at the case outcome level and 71.9% at the justice vote level. More recently, over the past century, we outperform an in-sample optimized null model by nearly 5%. Our performance is consistent with, and improves on the general level of prediction demonstrated by prior work; however, our model is distinctive because it can be applied out-of-sample to the entire past and future of the Court, not a single term. Our results represent an important advance for the science of quantitative legal prediction and portend a range of other potential applications.Comment: version 2.02; 18 pages, 5 figures. This paper is related to but distinct from arXiv:1407.6333, and the results herein supersede arXiv:1407.6333. Source code available at https://github.com/mjbommar/scotus-predict-v

    From Micro to Macro: Uncovering and Predicting Information Cascading Process with Behavioral Dynamics

    Full text link
    Cascades are ubiquitous in various network environments. How to predict these cascades is highly nontrivial in several vital applications, such as viral marketing, epidemic prevention and traffic management. Most previous works mainly focus on predicting the final cascade sizes. As cascades are typical dynamic processes, it is always interesting and important to predict the cascade size at any time, or predict the time when a cascade will reach a certain size (e.g. an threshold for outbreak). In this paper, we unify all these tasks into a fundamental problem: cascading process prediction. That is, given the early stage of a cascade, how to predict its cumulative cascade size of any later time? For such a challenging problem, how to understand the micro mechanism that drives and generates the macro phenomenons (i.e. cascading proceese) is essential. Here we introduce behavioral dynamics as the micro mechanism to describe the dynamic process of a node's neighbors get infected by a cascade after this node get infected (i.e. one-hop subcascades). Through data-driven analysis, we find out the common principles and patterns lying in behavioral dynamics and propose a novel Networked Weibull Regression model for behavioral dynamics modeling. After that we propose a novel method for predicting cascading processes by effectively aggregating behavioral dynamics, and propose a scalable solution to approximate the cascading process with a theoretical guarantee. We extensively evaluate the proposed method on a large scale social network dataset. The results demonstrate that the proposed method can significantly outperform other state-of-the-art baselines in multiple tasks including cascade size prediction, outbreak time prediction and cascading process prediction.Comment: 10 pages, 11 figure
    • …
    corecore