8,739 research outputs found

    Dynamics of quantum causal structures

    Full text link
    It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, due to quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g. one cannot say whether operation in laboratory A occurs before or after operation in laboratory B). Here we develop a framework for "dynamics of causal structures", i.e. for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B, via superposition of causal orders, to a channel from B to A. We generalise our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.Comment: 13+5 pages, 4 figures. Two appendices added. Published versio

    Abstract Tensor Systems as Monoidal Categories

    Full text link
    The primary contribution of this paper is to give a formal, categorical treatment to Penrose's abstract tensor notation, in the context of traced symmetric monoidal categories. To do so, we introduce a typed, sum-free version of an abstract tensor system and demonstrate the construction of its associated category. We then show that the associated category of the free abstract tensor system is in fact the free traced symmetric monoidal category on a monoidal signature. A notable consequence of this result is a simple proof for the soundness and completeness of the diagrammatic language for traced symmetric monoidal categories.Comment: Dedicated to Joachim Lambek on the occasion of his 90th birthda

    A categorical semantics for causal structure

    Get PDF
    We present a categorical construction for modelling causal structures within a general class of process theories that include the theory of classical probabilistic processes as well as quantum theory. Unlike prior constructions within categorical quantum mechanics, the objects of this theory encode fine-grained causal relationships between subsystems and give a new method for expressing and deriving consequences for a broad class of causal structures. We show that this framework enables one to define families of processes which are consistent with arbitrary acyclic causal orderings. In particular, one can define one-way signalling (a.k.a. semi-causal) processes, non-signalling processes, and quantum nn-combs. Furthermore, our framework is general enough to accommodate recently-proposed generalisations of classical and quantum theory where processes only need to have a fixed causal ordering locally, but globally allow indefinite causal ordering. To illustrate this point, we show that certain processes of this kind, such as the quantum switch, the process matrices of Oreshkov, Costa, and Brukner, and a classical three-party example due to Baumeler, Feix, and Wolf are all instances of a certain family of processes we refer to as SOCn\textrm{SOC}_n in the appropriate category of higher-order causal processes. After defining these families of causal structures within our framework, we give derivations of their operational behaviour using simple, diagrammatic axioms.Comment: Extended version of a LICS 2017 paper with the same titl

    The sl(n)-WZNW Fusion Ring: a combinatorial construction and a realisation as quotient of quantum cohomology

    Get PDF
    A simple, combinatorial construction of the sl(n)-WZNW fusion ring, also known as Verlinde algebra, is given. As a byproduct of the construction one obtains an isomorphism between the fusion ring and a particular quotient of the small quantum cohomology ring of the Grassmannian Gr(k,k+n). We explain how our approach naturally fits into known combinatorial descriptions of the quantum cohomology ring, by establishing what one could call a `Boson-Fermion-correspondence' between the two rings. We also present new recursion formulae for the structure constants of both rings, the fusion coefficients and the Gromov-Witten invariants.Comment: 61 pages, 2 eps figures; revised version accepted for publication in Advances in Mathematics: some minor typos removed, rewording of the proof to Corollary 6.9 and figure in Example 8.3 change

    Quantum Picturalism

    Full text link
    The quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. In this review we present steps towards a diagrammatic `high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. It allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports `automation'. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly recent development in mathematics. These monoidal categories do not only provide a natural foundation for physical theories, but also for proof theory, logic, programming languages, biology, cooking, ... The challenge is to discover the necessary additional pieces of structure that allow us to predict genuine quantum phenomena.Comment: Commissioned paper for Contemporary Physics, 31 pages, 84 pictures, some colo
    • …
    corecore