13,818 research outputs found

    Checking Interval Properties of Computations

    Full text link
    Model checking is a powerful method widely explored in formal verification. Given a model of a system, e.g., a Kripke structure, and a formula specifying its expected behaviour, one can verify whether the system meets the behaviour by checking the formula against the model. Classically, system behaviour is expressed by a formula of a temporal logic, such as LTL and the like. These logics are "point-wise" interpreted, as they describe how the system evolves state-by-state. However, there are relevant properties, such as those constraining the temporal relations between pairs of temporally extended events or involving temporal aggregations, which are inherently "interval-based", and thus asking for an interval temporal logic. In this paper, we give a formalization of the model checking problem in an interval logic setting. First, we provide an interpretation of formulas of Halpern and Shoham's interval temporal logic HS over finite Kripke structures, which allows one to check interval properties of computations. Then, we prove that the model checking problem for HS against finite Kripke structures is decidable by a suitable small model theorem, and we provide a lower bound to its computational complexity.Comment: In Journal: Acta Informatica, Springer Berlin Heidelber, 201

    Structured specifications for better verification of heap-manipulating programs

    Get PDF
    Abstract. Conventional specifications typically have a flat structure that is based primarily on the underlying logic. Such specifications lack structures that could have provided better guidance to the verification process. In this work, we propose to add three new structures to a specification framework for separation logic to achieve a more precise and better guided verification for pointer-based programs. The newly introduced structures empower users with more control over the verification process in the following ways: (i) case analysis can be invoked to take advantage of disjointness conditions in the logic. (ii) early, as opposed to late, instantiation can minimise on the use of existential quantification. (iii) formulae that are staged provide better reuse of the verification process. Initial experiments have shown that structured specifications can lead to more precise verification without incurring any performance overhead.

    Structural Separation Logic

    Get PDF
    This thesis presents structural separation logic, a novel program reasoning approach for software that manipulates both standard heaps and structured data such as lists and trees. Structural separation logic builds upon existing work in both separation logic and context logic. It considers data abstractly, much as it is exposed by library interfaces, ignoring implementation details. We provide a programming language that works over structural heaps, which are similar to standard heaps but allow data to be stored in an abstract form. We introduce abstract heaps, which extend structural heaps to enable local reasoning about abstract data. Such data can be split up with structural addresses. Structural addresses allow sub-data (e.g. a sub-tree within a tree) to be abstractly allocated, promoting the sub-data to an abstract heap cell. This cell can be analysed in isolation, then re-joined with the original data. We show how the tight footprints this allows can be refined further with promises, which enable abstract heap cells to retain information about the context from which they were allocated. We prove that our approach is sound with respect to a standard Hoare logic. We study two large examples. Firstly, we present an axiomatic semantics for the Docu- ment Object Model in structural separation logic. We demonstrate how structural separa- tion logic allows abstract reasoning about the DOM tree using tighter footprints than were possible in previous work. Secondly, we give a novel presentation of the POSIX file system library. We identify a subset of the large POSIX standard that focuses on the file system, including commands that manipulate both the file heap and the directory structure. Axioms for this system are given using structural separation logic. As file system resources are typically identified by paths, we use promises to give tight footprints to commands, so that that they do not require all the resource needed to explain paths being used. We demonstrate our reasoning using a software installer example.Open Acces

    Adaptive heterogeneous parallelism for semi-empirical lattice dynamics in computational materials science.

    Get PDF
    With the variability in performance of the multitude of parallel environments available today, the conceptual overhead created by the need to anticipate runtime information to make design-time decisions has become overwhelming. Performance-critical applications and libraries carry implicit assumptions based on incidental metrics that are not portable to emerging computational platforms or even alternative contemporary architectures. Furthermore, the significance of runtime concerns such as makespan, energy efficiency and fault tolerance depends on the situational context. This thesis presents a case study in the application of both Mattsons prescriptive pattern-oriented approach and the more principled structured parallelism formalism to the computational simulation of inelastic neutron scattering spectra on hybrid CPU/GPU platforms. The original ad hoc implementation as well as new patternbased and structured implementations are evaluated for relative performance and scalability. Two new structural abstractions are introduced to facilitate adaptation by lazy optimisation and runtime feedback. A deferred-choice abstraction represents a unified space of alternative structural program variants, allowing static adaptation through model-specific exhaustive calibration with regards to the extrafunctional concerns of runtime, average instantaneous power and total energy usage. Instrumented queues serve as mechanism for structural composition and provide a representation of extrafunctional state that allows realisation of a market-based decentralised coordination heuristic for competitive resource allocation and the Lyapunov drift algorithm for cooperative scheduling

    Evolutionary improvement of programs

    Get PDF
    Most applications of genetic programming (GP) involve the creation of an entirely new function, program or expression to solve a specific problem. In this paper, we propose a new approach that applies GP to improve existing software by optimizing its non-functional properties such as execution time, memory usage, or power consumption. In general, satisfying non-functional requirements is a difficult task and often achieved in part by optimizing compilers. However, modern compilers are in general not always able to produce semantically equivalent alternatives that optimize non-functional properties, even if such alternatives are known to exist: this is usually due to the limited local nature of such optimizations. In this paper, we discuss how best to combine and extend the existing evolutionary methods of GP, multiobjective optimization, and coevolution in order to improve existing software. Given as input the implementation of a function, we attempt to evolve a semantically equivalent version, in this case optimized to reduce execution time subject to a given probability distribution of inputs. We demonstrate that our framework is able to produce non-obvious optimizations that compilers are not yet able to generate on eight example functions. We employ a coevolved population of test cases to encourage the preservation of the function's semantics. We exploit the original program both through seeding of the population in order to focus the search, and as an oracle for testing purposes. As well as discussing the issues that arise when attempting to improve software, we employ rigorous experimental method to provide interesting and practical insights to suggest how to address these issues
    corecore