13 research outputs found

    Advance control strategies for Maglev suspension systems

    Get PDF
    The Birmingham Maglev developed over fifteen years ago has successfully demonstrated the inherent advantages of low speed maglev over comparable wheeled systems. It remains the only commercially operational Maglev in the world today. To develop the next generation of Maglev vehicles which will overcome some of the limitations of the Birmingham system, such as chassis length and cost, the following issues are addressed in this thesis. 1) The possibility of interaction between the chassis resonant frequencies and the suspension control system causing poor ride quality and at worst instability, are formally analysed. In the Birmingham vehicle a stiff chassis (fundamental bending mode 40Hz) is used avoiding significant interaction with the suspension controller. Using advanced control strategies the low frequency chassis resonances can be controlled allowing a vehicle structure to be used with a fundamental bending mode of about 12Hz. 2) A modem control strategy is developed which delivers an improved ride quality compared with the present classical control system despite having to operate with a 'soft' chassis. Kalman filters are digitally implemented and conclusions drawn about their performance. The classical control strategy is also successfully demonstrated on a 3 m long 'flexible beam' rig. 3) An associated Maglev suspension problem for the response to ramp inputs such as the transition onto gradients which causes either a large steady state tracking error or a worsening ride quality is addressed by modern control theory using integral feedback techniques and classical theory using third order filters. These controllers are globally optimised by a multi-objective parameter optimisation system which formally considers the conflicts inherent in a suspension system between response to stochastic inputs and deterministic inputs

    Generalised modal realisation as a practical and efficient tool for FWL implementation

    No full text
    International audienceFinite word length (FWL) effects have been a critical issue in digital filter implementation for almost four decades. Although some optimisations may be attempted to get an optimal realisation with regards to a particular effect, for instance the parametric sensitivity or the round-off noise gain, the purpose of this article is to propose an effective one, i.e. taking into account all the aspects. Based on the specialised implicit form, a new effective and sparse structure, named rho-modal realisation, is proposed. This realisation meets simultaneously accuracy (low sensitivity, round-off noise gain and overflow risk), few and flexible computational efforts with a good readability (thanks to sparsity) and simplicity (no tricky optimisation is required to obtain it) as well. Two numerical examples are included to illustrate the rho-modal realisation's interest

    Security Analysis of System Behaviour - From "Security by Design" to "Security at Runtime" -

    Get PDF
    The Internet today provides the environment for novel applications and processes which may evolve way beyond pre-planned scope and purpose. Security analysis is growing in complexity with the increase in functionality, connectivity, and dynamics of current electronic business processes. Technical processes within critical infrastructures also have to cope with these developments. To tackle the complexity of the security analysis, the application of models is becoming standard practice. However, model-based support for security analysis is not only needed in pre-operational phases but also during process execution, in order to provide situational security awareness at runtime. This cumulative thesis provides three major contributions to modelling methodology. Firstly, this thesis provides an approach for model-based analysis and verification of security and safety properties in order to support fault prevention and fault removal in system design or redesign. Furthermore, some construction principles for the design of well-behaved scalable systems are given. The second topic is the analysis of the exposition of vulnerabilities in the software components of networked systems to exploitation by internal or external threats. This kind of fault forecasting allows the security assessment of alternative system configurations and security policies. Validation and deployment of security policies that minimise the attack surface can now improve fault tolerance and mitigate the impact of successful attacks. Thirdly, the approach is extended to runtime applicability. An observing system monitors an event stream from the observed system with the aim to detect faults - deviations from the specified behaviour or security compliance violations - at runtime. Furthermore, knowledge about the expected behaviour given by an operational model is used to predict faults in the near future. Building on this, a holistic security management strategy is proposed. The architecture of the observing system is described and the applicability of model-based security analysis at runtime is demonstrated utilising processes from several industrial scenarios. The results of this cumulative thesis are provided by 19 selected peer-reviewed papers

    Safety system design optimisation

    Get PDF
    This thesis investigates the efficiency of a design optimisation scheme that is appropriate for systems which require a high likelihood of functioning on demand. Traditional approaches to the design of safety critical systems follow the preliminary design, analysis, appraisal and redesign stages until what is regarded as an acceptable design is achieved. For safety systems whose failure could result in loss of life it is imperative that the best use of the available resources is made and a system which is optimal, not just adequate, is produced. The object of the design optimisation problem is to minimise system unavailability through manipulation of the design variables, such that limitations placed on them by constraints are not violated. Commonly, with mathematical optimisation problem; there will be an explicit objective function which defines how the characteristic to be minimised is related to the variables. As regards the safety system problem, an explicit objective function cannot be formulated, and as such, system performance is assessed using the fault tree method. By the use of house events a single fault tree is constructed to represent the failure causes of each potential design to overcome the time consuming task of constructing a fault tree for each design investigated during the optimisation procedure. Once the fault tree has been constructed for the design in question it is converted to a BDD for analysis. A genetic algorithm is first employed to perform the system optimisation, where the practicality of this approach is demonstrated initially through application to a High-Integrity Protection System (HIPS) and subsequently a more complex Firewater Deluge System (FDS). An alternative optimisation scheme achieves the final design specification by solving a sequence of optimisation problems. Each of these problems are defined by assuming some form of the objective function and specifying a sub-region of the design space over which this function will be representative of the system unavailability. The thesis concludes with attention to various optimisation techniques, which possess features able to address difficulties in the optimisation of safety critical systems. Specifically, consideration is given to the use of a statistically designed experiment and a logical search approach

    Evaluation of a task performance resource constraint model to assess the impact of offshore emergency management on risk reduction

    Get PDF
    In this age of safety awareness, technological emergencies still happen, occasionally with catastrophic results. Often human intervention is the only way of averting disaster. Ensuring that the chosen emergency managers are competent requires a combination of training and assessmentH. owever, assessmenct urrently relies on expert judgement of behaviour as opposed to its impact on outcome, therefore it would be difficult to incorporate such data into formal Quantitative Risk Assessments (QRA). Although there is, as yet, no suitable alternative to expert judgement, there is a need for methods of quantifying the impact of emergency management on risk reduction in accident and incidents. The Task Performance Resource Constraint (TPRC) model is capable of representing the critical factors. It calculates probability of task success with respect to time based on uncertainties associated with the task and resource variables. The results can then be used to assess the management performance based on the physical outcome in the emergency, thereby providing a measure of the impact of emergency management on risk with a high degree of objectivity. Data obtained from training exercises for offshore and onshore emergency management were measured and successfully used with the TPRC model. The resulting probability of success functions also demonstrated a high level of external validity when used with improvements in emergency management or design changes or real data from the Piper Alpha disaster. It also appeared to have more external validity than other HRQ/QRA techniques as it uses physical data that are a greater influence on outcome than psychological changes - though this could be because the current HRA/QRA techniques view human unreliability as probability of error rather than probability of failure. The simulation data were also used to build up distributions of timings for simple emergency management tasks. Using additional theoretical data, this demonstrated the model's potential for assessing the probability of successf or novel situations and future designs
    corecore