66 research outputs found

    The Gilbert Arborescence Problem

    Full text link
    We investigate the problem of designing a minimum cost flow network interconnecting n sources and a single sink, each with known locations in a normed space and with associated flow demands. The network may contain any finite number of additional unprescribed nodes from the space; these are known as the Steiner points. For concave increasing cost functions, a minimum cost network of this sort has a tree topology, and hence can be called a Minimum Gilbert Arborescence (MGA). We characterise the local topological structure of Steiner points in MGAs, showing, in particular, that for a wide range of metrics, and for some typical real-world cost-functions, the degree of each Steiner point is 3.Comment: 19 pages, 7 figures. arXiv admin note: text overlap with arXiv:0903.212

    Algorithms for the power-p Steiner tree problem in the Euclidean plane

    Get PDF
    We study the problem of constructing minimum power-pp Euclidean kk-Steiner trees in the plane. The problem is to find a tree of minimum cost spanning a set of given terminals where, as opposed to the minimum spanning tree problem, at most kk additional nodes (Steiner points) may be introduced anywhere in the plane. The cost of an edge is its length to the power of pp (where p≥1p\geq 1), and the cost of a network is the sum of all edge costs. We propose two heuristics: a ``beaded" minimum spanning tree heuristic; and a heuristic which alternates between minimum spanning tree construction and a local fixed topology minimisation procedure for locating the Steiner points. We show that the performance ratio κ\kappa of the beaded-MST heuristic satisfies 3p−1(1+21−p)≤κ≤3(2p−1)\sqrt{3}^{p-1}(1+2^{1-p})\leq \kappa\leq 3(2^{p-1}). We then provide two mixed-integer nonlinear programming formulations for the problem, and extend several important geometric properties into valid inequalities. Finally, we combine the valid inequalities with warm-starting and preprocessing to obtain computational improvements for the p=2p=2 case

    The algebra of entanglement and the geometry of composition

    Full text link
    String diagrams turn algebraic equations into topological moves that have recurring shapes, involving the sliding of one diagram past another. We individuate, at the root of this fact, the dual nature of polygraphs as presentations of higher algebraic theories, and as combinatorial descriptions of "directed spaces". Operations of polygraphs modelled on operations of topological spaces are used as the foundation of a compositional universal algebra, where sliding moves arise from tensor products of polygraphs. We reconstruct several higher algebraic theories in this framework. In this regard, the standard formalism of polygraphs has some technical problems. We propose a notion of regular polygraph, barring cell boundaries that are not homeomorphic to a disk of the appropriate dimension. We define a category of non-degenerate shapes, and show how to calculate their tensor products. Then, we introduce a notion of weak unit to recover weakly degenerate boundaries in low dimensions, and prove that the existence of weak units is equivalent to a representability property. We then turn to applications of diagrammatic algebra to quantum theory. We re-evaluate the category of Hilbert spaces from the perspective of categorical universal algebra, which leads to a bicategorical refinement. Then, we focus on the axiomatics of fragments of quantum theory, and present the ZW calculus, the first complete diagrammatic axiomatisation of the theory of qubits. The ZW calculus has several advantages over ZX calculi, including a computationally meaningful normal form, and a fragment whose diagrams can be read as setups of fermionic oscillators. Moreover, its generators reflect an operational classification of entangled states of 3 qubits. We conclude with generalisations of the ZW calculus to higher-dimensional systems, including the definition of a universal set of generators in each dimension.Comment: v2: changes to end of Chapter 3. v1: 214 pages, many figures; University of Oxford doctoral thesi

    Subject index volumes 1–92

    Get PDF

    Eisenstein series and automorphic representations

    Full text link
    We provide an introduction to the theory of Eisenstein series and automorphic forms on real simple Lie groups G, emphasising the role of representation theory. It is useful to take a slightly wider view and define all objects over the (rational) adeles A, thereby also paving the way for connections to number theory, representation theory and the Langlands program. Most of the results we present are already scattered throughout the mathematics literature but our exposition collects them together and is driven by examples. Many interesting aspects of these functions are hidden in their Fourier coefficients with respect to unipotent subgroups and a large part of our focus is to explain and derive general theorems on these Fourier expansions. Specifically, we give complete proofs of the Langlands constant term formula for Eisenstein series on adelic groups G(A) as well as the Casselman--Shalika formula for the p-adic spherical Whittaker function associated to unramified automorphic representations of G(Q_p). In addition, we explain how the classical theory of Hecke operators fits into the modern theory of automorphic representations of adelic groups, thereby providing a connection with some key elements in the Langlands program, such as the Langlands dual group LG and automorphic L-functions. Somewhat surprisingly, all these results have natural interpretations as encoding physical effects in string theory. We therefore also introduce some basic concepts of string theory, aimed toward mathematicians, emphasising the role of automorphic forms. In particular, we provide a detailed treatment of supersymmetry constraints on string amplitudes which enforce differential equations of the same type that are satisfied by automorphic forms. Our treatise concludes with a detailed list of interesting open questions and pointers to additional topics which go beyond the scope of this book.Comment: 326 pages. Detailed and example-driven exposition of the subject with highlighted applications to string theory. v2: 375 pages. Substantially extended and small correction
    • …
    corecore