380 research outputs found

    Generalised coherent point drift for group-wise multi-dimensional analysis of diffusion brain MRI data

    Get PDF
    A probabilistic framework for registering generalised point sets comprising multiple voxel-wise data features such as positions, orientations and scalar-valued quantities, is proposed. It is employed for the analysis of magnetic resonance diffusion tensor image (DTI)-derived quantities, such as fractional anisotropy (FA) and fibre orientation, across multiple subjects. A hybrid Studentā€™s t-Watson-Gaussian mixture model-based non-rigid registration framework is formulated for the joint registration and clustering of voxel-wise DTI-derived data, acquired from multiple subjects. The proposed approach jointly estimates the non-rigid transformations necessary to register an unbiased mean template (represented as a 7-dimensional hybrid point set comprising spatial positions, fibre orientations and FA values) to white matter regions of interest (ROIs), and approximates the joint distribution of voxel spatial positions, their associated principal diffusion axes, and FA. Specific white matter ROIs, namely, the corpus callosum and cingulum, are analysed across healthy control (HC) subjects (K = 20 samples) and patients diagnosed with mild cognitive impairment (MCI) (K = 20 samples) or Alzheimerā€™s disease (AD) (K = 20 samples) using the proposed framework, facilitating inter-group comparisons of FA and fibre orientations. Group-wise analyses of the latter is not afforded by conventional approaches such as tract-based spatial statistics (TBSS) and voxel-based morphometry (VBM)

    A Probabilistic Framework for Statistical Shape Models and Atlas Construction: Application to Neuroimaging

    Get PDF
    Accurate and reliable registration of shapes and multi-dimensional point sets describing the morphology/physiology of anatomical structures is a pre-requisite for constructing statistical shape models (SSMs) and atlases. Such statistical descriptions of variability across populations (regarding shape or other morphological/physiological quantities) are based on homologous correspondences across the multiple samples that comprise the training data. The notion of exact correspondence can be ambiguous when these data contain noise and outliers, missing data, or significant and abnormal variations due to pathology. But, these phenomena are common in medical image-derived data, due, for example, to inconsistencies in image quality and acquisition protocols, presence of motion artefacts, differences in pre-processing steps, and inherent variability across patient populations and demographics. This thesis therefore focuses on formulating a unified probabilistic framework for the registration of shapes and so-called \textit{generalised point sets}, which is robust to the anomalies and variations described. Statistical analysis of shapes across large cohorts demands automatic generation of training sets (image segmentations delineating the structure of interest), as manual and semi-supervised approaches can be prohibitively time consuming. However, automated segmentation and landmarking of images often result in shapes with high levels of outliers and missing data. Consequently, a robust method for registration and correspondence estimation is required. A probabilistic group-wise registration framework for point-based representations of shapes, based on Studentā€™s t-mixture model (TMM) and a multi-resolution extension to the same (mrTMM), are formulated to this end. The frameworks exploit the inherent robustness of Studentā€™s t-distributions to outliers, which is lacking in existing Gaussian mixture model (GMM)-based approaches. The registration accuracy of the proposed approaches was quantitatively evaluated and shown to outperform the state-of-the-art, using synthetic and clinical data. A corresponding improvement in the quality of SSMs generated subsequently was also shown, particularly for data sets containing high levels of noise. In general, the proposed approach requires fewer user specified parameters than existing methods, whilst affording much improved robustness to outliers. Registration of generalised point sets, which combine disparate features such as spatial positions, directional/axial data, and scalar-valued quantities, was studied next. A hybrid mixture model (HMM), combining different types of probability distributions, was formulated to facilitate the joint registration and clustering of multi-dimensional point sets of this nature. Two variants of the HMM were developed for modelling: (1) axial data; and (2) directional data. The former, based on a combination of Studentā€™s t, Watson and Gaussian distributions, was used to register hybrid point sets comprising magnetic resonance diffusion tensor image (DTI)-derived quantities, such as voxel spatial positions (defining a region/structure of interest), associated fibre orientations, and scalar measures reflecting tissue anisotropy. The latter meanwhile, formulated using a combination of Studentā€™s t and Von-Mises-Fisher distributions, is used for the registration of shapes represented as hybrid point sets comprising spatial positions and associated surface normal vectors. The Watson-variant of the HMM facilitates statistical analysis and group-wise comparisons of DTI data across patient populations, presented as an exemplar application of the proposed approach. The Fisher-variant of the HMM on the other hand, was used to register hybrid representations of shapes, providing substantial improvements over point-based registration approaches in terms of anatomical validity in the estimated correspondences

    Aligning 3D Curve with Surface Using Tangent and Normal Vectors for Computer-Assisted Orthopedic Surgery

    Get PDF
    Registration that aligns different views of one interested organ together is an essential technique and outstanding problem in medical robotics and image-guided surgery (IGS). This work introduces a novel rigid point set registration (PSR) approach that aims to accurately map the pre-operative space with the intra-operative space to enable successful image guidance for computer-assisted orthopaedic surgery (CAOS). The normal vectors and tangent vectors are first extracted from the pre-operative and intra-operative point sets (PSs) respectively, and are further utilized to enhance the registration accuracy and robustness. The contributions of this article are three-folds. First, we propose and formulate a novel distribution that describes the error between one normal vector and the corresponding tangent vector based on the von-Mises Fisher (vMF) distribution. Second, by modelling the anisotropic position localization error with the multi-variate Gaussian distribution, we formulate the PSR considering anisotropic localization error as a maximum likelihood estimation (MLE) problem and then solve it under the expectation maximization (EM) framework. Third, to facilitate the optimization process, the gradients of the objective function with respect to the desired parameters are computed and presented. Extensive experimental results on the human femur and pelvis models verify that the proposed approach outperforms the state-of-the-art methods, and demonstrate potential clinical values for relevant surgical navigation applications

    Methods for Data Management in Multi-Centre MRI Studies and Applications to Traumatic Brain Injury

    Get PDF
    Neuroimaging studies are becoming increasingly bigger, and multi-centre collaborations to collect data under similar protocols, but different scanning sites, are now commonplace.However, with increasing sample size the complexity of databases and the entailed data management as well as computational burden are growing. This thesis aims to highlight and address challenges faced by large multi-centre magnetic resonance imaging(MRI) studies. The methods implemented are then applied to traumatic brain injury (TBI) data.Firstly, a pre-processing pipeline for both anatomical and diffusion MRI was proposed, that allows for a high throughput of MRI scans. After describing the choices for processing tools,the performance of the integrated quality assurance was assessed based on the results from a large multi-centre dataset for TBI. Secondly, the applicability of the pipelines for processing mild TBI (mTBI) data from three sites was shown in a case study. For this, volumetric and diffusion metrics in the acute phase are analysed for their prognostic potential. Further-more, the cohort was examined for longitudinal changes. Thirdly, independent scan-rescan datasets are examined to gain a better understanding of the degree of reproducibility which can be achieved in imaging studies. This involves analysing the robustness of brain parcellations based on structural or diffusion imaging. The effect of using different MRI scanners or imaging protocols was also assessed and discussed. Fourthly, sources of diffusion MRI variability and different approaches to cope with these are reviewed. Using this foundation,state-of-the art methods for diffusion MRI harmonisation were compared against each other using both a benchmark dataset and mTBI cohort. Lastly, a solution to localise brain lesions was proposed. Its implications for lesion analysis, are assessed in the light of an application to a more severe TBI patient cohort, imaged on two different scanners. Furthermore, a lesion matching algorithm was introduced to automatically examine lesion evolution with time post-injury. In summary, this thesis explored different options for MRI data analysis in the context of large multi-centre studies. Different approaches are studied and compared using a number of different MRI datasets, including scan-rescan data across different MRI scanners and imaging protocols. The potential of the optimised solutions was illustrated through applications to TBI data.CENTER-TB

    Automatic analysis of medical images for change detection in prostate cancer

    Get PDF
    Prostate cancer is the most common cancer and second most common cause of cancer death in men in the UK. However, the patient risk from the cancer can vary considerably, and the widespread use of prostate-specific antigen (PSA) screening has led to over-diagnosis and over-treatment of low-grade tumours. It is therefore important to be able to differentiate high-grade prostate cancer from the slowly- growing, low-grade cancer. Many of these men with low-grade cancer are placed on active surveillance (AS), which involves constant monitoring and intervention for risk reclassification, relying increasingly on magnetic resonance imaging (MRI) to detect disease progression, in addition to TRUS-guided biopsies which are the routine clinical standard method to use. This results in a need for new tools to process these images. For this purpose, it is important to have a good TRUS-MR registration so corresponding anatomy can be located accurately between the two. Automatic segmentation of the prostate gland on both modalities reduces some of the challenges of the registration, such as patient motion, tissue deformation, and the time of the procedure. This thesis focuses on the use of deep learning methods, specifically convolutional neural networks (CNNs), for prostate cancer management. Chapters 4 and 5 investigated the use of CNNs for both TRUS and MRI prostate gland segmentation, and reported high segmentation accuracies for both, Dice Score Coefficients (DSC) of 0.89 for TRUS segmentations and DSCs between 0.84-0.89 for MRI prostate gland segmentation using a range of networks. Chapter 5 also investigated the impact of these segmentation scores on more clinically relevant measures, such as MRI-TRUS registration errors and volume measures, showing that a statistically significant difference in DSCs did not lead to a statistically significant difference in the clinical measures using these segmentations. The potential of these algorithms in commercial and clinical systems are summarised and the use of the MRI prostate gland segmentation in the application of radiological prostate cancer progression prediction for AS patients are investigated and discussed in Chapter 8, which shows statistically significant improvements in accuracy when using spatial priors in the form of prostate segmentations (0.63 Ā± 0.16 vs. 0.82 Ā± 0.18 when comparing whole prostate MRI vs. only prostate gland region, respectively)

    The impact of head orientation with respect to B0 on diffusion tensor MRI measures

    Get PDF
    Diffusion tensor MRI (DT-MRI) remains the most commonly used approach to characterise white matter (WM) anisotropy. However, DT estimates may be affected by tissue orientation w.r.t. Bā†’0 due to local gradients and intrinsic T2 orientation dependence induced by the microstructure. This work aimed to investigate whether and how diffusion tensor MRI-derived measures depend on the orientation of the head with respect to the static magnetic field, Bā†’0 ā . By simulating WM as two compartments, we demonstrated that compartmental T2 anisotropy can induce the dependence of diffusion tensor measures on the angle between WM fibres and the magnetic field. In in vivo experiments, reduced radial diffusivity and increased axial diffusivity were observed in white matter fibres perpendicular to Bā†’0 compared to those parallel to Bā†’0 ā . Fractional anisotropy varied by up to 20% as a function of the angle between WM fibres and the orientation of the main magnetic field. To conclude, fibre orientation w.r.t. Bā†’0 is responsible for up to 7% variance in diffusion tensor measures across the whole brain white matter from all subjects and head orientations. Fibre orientation w.r.t. Bā†’0 may introduce additional variance in clinical research studies using diffusion tensor imaging, particularly when it is difficult to control for (e.g. fetal or neonatal imaging, or when the trajectories of fibres change due to e.g. space occupying lesions)
    • ā€¦
    corecore