19,084 research outputs found

    Design of teacher assistance tools in an exploratory learning environment for algebraic generalisation

    Get PDF
    The MiGen project is designing and developing an intelligent exploratory environment to support 11-14 year-old students in their learning of algebraic generalisation. Deployed within the classroom, the system also provides tools to assist teachers in monitoring students' activities and progress. This paper describes the architectural design of these Teacher Assistance tools and gives a detailed description of one such tool, focussing in particular on the research challenges faced, and the technologies and approaches chosen to implement the necessary functionalities given the context of the project

    Neuronal assembly dynamics in supervised and unsupervised learning scenarios

    Get PDF
    The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system’s variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions

    Intelligent search strategies based on adaptive Constraint Handling Rules

    Full text link
    The most advanced implementation of adaptive constraint processing with Constraint Handling Rules (CHR) allows the application of intelligent search strategies to solve Constraint Satisfaction Problems (CSP). This presentation compares an improved version of conflict-directed backjumping and two variants of dynamic backtracking with respect to chronological backtracking on some of the AIM instances which are a benchmark set of random 3-SAT problems. A CHR implementation of a Boolean constraint solver combined with these different search strategies in Java is thus being compared with a CHR implementation of the same Boolean constraint solver combined with chronological backtracking in SICStus Prolog. This comparison shows that the addition of ``intelligence'' to the search process may reduce the number of search steps dramatically. Furthermore, the runtime of their Java implementations is in most cases faster than the implementations of chronological backtracking. More specifically, conflict-directed backjumping is even faster than the SICStus Prolog implementation of chronological backtracking, although our Java implementation of CHR lacks the optimisations made in the SICStus Prolog system. To appear in Theory and Practice of Logic Programming (TPLP).Comment: Number of pages: 27 Number of figures: 14 Number of Tables:

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Learner modelling in exploratory learning for mathematical generalisation

    Get PDF

    Dealing with abstraction: Case study generalisation as a method for eliciting design patterns

    Get PDF
    Developing a pattern language is a non-trivial problem. A critical requirement is a method to support pattern writers with abstraction, so as they can produce generalised patterns. In this paper, we address this issue by developing a structured process of generalisation. It is important that this process is initiated through engaging participants in identifying initial patterns, i.e. directly dealing with the 'cold-start' problem. We have found that short case study descriptions provide a productive 'way into' the process for participants. We reflect on a 1-year interdisciplinary pan-European research project involving the development of almost 30 cases and over 150 patterns. We provide example cases, detailing the process by which their associated patterns emerged. This was based on a foundation for generalisation from cases with common attributes. We discuss the merits of this approach and its implications for pattern development

    Comparing the Online Learning Capabilities of Gaussian ARTMAP and Fuzzy ARTMAP for Building Energy Management Systems

    Get PDF
    Recently, there has been a growing interest in the application of Fuzzy ARTMAP for use in building energy management systems or EMS. However, a number of papers have indicated that there are important weaknesses to the Fuzzy ARTMAP approach, such as sensitivity to noisy data and category proliferation. Gaussian ARTMAP was developed to help overcome these weaknesses, raising the question of whether Gaussian ARTMAP could be a more effective approach for building energy management systems? This paper aims to answer this question. In particular, our results show that Gaussian ARTMAP not only has the capability to address the weaknesses of Fuzzy ARTMAP but, by doing this, provides better and more efficient EMS controls with online learning capabilities
    corecore