37,976 research outputs found

    Infinite-Duration Bidding Games

    Full text link
    Two-player games on graphs are widely studied in formal methods as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the {\em bidding} mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. The following bidding rule was previously defined and called Richman bidding. Both players have separate {\em budgets}, which sum up to 11. In each turn, a bidding takes place: Both players submit bids simultaneously, where a bid is legal if it does not exceed the available budget, and the higher bidder pays his bid to the other player and moves the token. The central question studied in bidding games is a necessary and sufficient initial budget for winning the game: a {\em threshold} budget in a vertex is a value t∈[0,1]t \in [0,1] such that if Player 11's budget exceeds tt, he can win the game, and if Player 22's budget exceeds 1βˆ’t1-t, he can win the game. Threshold budgets were previously shown to exist in every vertex of a reachability game, which have an interesting connection with {\em random-turn} games -- a sub-class of simple stochastic games in which the player who moves is chosen randomly. We show the existence of threshold budgets for a qualitative class of infinite-duration games, namely parity games, and a quantitative class, namely mean-payoff games. The key component of the proof is a quantitative solution to strongly-connected mean-payoff bidding games in which we extend the connection with random-turn games to these games, and construct explicit optimal strategies for both players.Comment: A short version appeared in CONCUR 2017. The paper is accepted to JAC

    ATTac-2000: An Adaptive Autonomous Bidding Agent

    Full text link
    The First Trading Agent Competition (TAC) was held from June 22nd to July 8th, 2000. TAC was designed to create a benchmark problem in the complex domain of e-marketplaces and to motivate researchers to apply unique approaches to a common task. This article describes ATTac-2000, the first-place finisher in TAC. ATTac-2000 uses a principled bidding strategy that includes several elements of adaptivity. In addition to the success at the competition, isolated empirical results are presented indicating the robustness and effectiveness of ATTac-2000's adaptive strategy

    Determinacy in Discrete-Bidding Infinite-Duration Games

    Get PDF
    In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner of the game. Such games are central in formal methods since they model the interaction between a non-terminating system and its environment. In bidding games the players bid for the right to move the token: in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Bidding games are known to have a clean and elegant mathematical structure that relies on the ability of the players to submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids, which can represent, for example, the monetary value expressed in cents. We study, for the first time, the combination of discrete-bidding and infinite-duration games. Our most important result proves that these games form a large determined subclass of concurrent games, where determinacy is the strong property that there always exists exactly one player who can guarantee winning the game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with which tied bids are resolved plays an important role in discrete-bidding games. We study several natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural mechanisms imply determinacy for every pair of initial budgets
    • …
    corecore