1,317 research outputs found

    NLSC: Unrestricted Natural Language-based Service Composition through Sentence Embeddings

    Full text link
    Current approaches for service composition (assemblies of atomic services) require developers to use: (a) domain-specific semantics to formalize services that restrict the vocabulary for their descriptions, and (b) translation mechanisms for service retrieval to convert unstructured user requests to strongly-typed semantic representations. In our work, we argue that effort to developing service descriptions, request translations, and matching mechanisms could be reduced using unrestricted natural language; allowing both: (1) end-users to intuitively express their needs using natural language, and (2) service developers to develop services without relying on syntactic/semantic description languages. Although there are some natural language-based service composition approaches, they restrict service retrieval to syntactic/semantic matching. With recent developments in Machine learning and Natural Language Processing, we motivate the use of Sentence Embeddings by leveraging richer semantic representations of sentences for service description, matching and retrieval. Experimental results show that service composition development effort may be reduced by more than 44\% while keeping a high precision/recall when matching high-level user requests with low-level service method invocations.Comment: This paper will appear on SCC'19 (IEEE International Conference on Services Computing) on July 1

    Smartphone App Usage Analysis : Datasets, Methods, and Applications

    Get PDF
    As smartphones have become indispensable personal devices, the number of smartphone users has increased dramatically over the last decade. These personal devices, which are supported by a variety of smartphone apps, allow people to access Internet services in a convenient and ubiquitous manner. App developers and service providers can collect fine-grained app usage traces, revealing connections between users, apps, and smartphones. We present a comprehensive review of the most recent research on smartphone app usage analysis in this survey. Our survey summarizes advanced technologies and key patterns in smartphone app usage behaviors, all of which have significant implications for all relevant stakeholders, including academia and industry. We begin by describing four data collection methods: surveys, monitoring apps, network operators, and app stores, as well as nine publicly available app usage datasets. We then systematically summarize the related studies of app usage analysis in three domains: app domain, user domain, and smartphone domain. We make a detailed taxonomy of the problem studied, the datasets used, the methods used, and the significant results obtained in each domain. Finally, we discuss future directions in this exciting field by highlighting research challenges.Peer reviewe

    Modeling Users Feedback Using Bayesian Methods for Data-Driven Requirements Engineering

    Get PDF
    Data-driven requirements engineering represents a vision for a shift from the static traditional methods of doing requirements engineering to dynamic data-driven user-centered methods. App developers now receive abundant user feedback from user comments in app stores and social media, i.e., explicit feedback, to feedback from usage data and system logs, i.e, implicit feedback. In this dissertation, we describe two novel Bayesian approaches that utilize the available user\u27s to support requirements decisions and activities in the context of applications delivered through software marketplaces (web and mobile). In the first part, we propose to exploit implicit user feedback in the form of usage data to support requirements prioritization and validation. We formulate the problem as a popularity prediction problem and present a novel Bayesian model that is highly interpretable and offers early-on insights that can be used to support requirements decisions. Experimental results demonstrate that the proposed approach achieves high prediction accuracy and outperforms competitive models. In the second part, we discuss the limitations of previous approaches that use explicit user feedback for requirements extraction, and alternatively, propose a novel Bayesian approach that can address those limitations and offer a more efficient and maintainable framework. The proposed approach (1) simplifies the pipeline by accomplishing the classification and summarization tasks using a single model, (2) replaces manual steps in the pipeline with unsupervised alternatives that can accomplish the same task, and (3) offers an alternative way to extract requirements using example-based summaries that retains context. Experimental results demonstrate that the proposed approach achieves equal or better classification accuracy and outperforms competitive models in terms of summarization accuracy. Specifically, we show that the proposed approach can capture 91.3% of the discussed requirement with only 19% of the dataset, i.e., reducing the human effort needed to extract the requirements by 80%
    • …
    corecore