2,590 research outputs found

    Multi-party Quantum Computation

    Get PDF
    We investigate definitions of and protocols for multi-party quantum computing in the scenario where the secret data are quantum systems. We work in the quantum information-theoretic model, where no assumptions are made on the computational power of the adversary. For the slightly weaker task of verifiable quantum secret sharing, we give a protocol which tolerates any t < n/4 cheating parties (out of n). This is shown to be optimal. We use this new tool to establish that any multi-party quantum computation can be securely performed as long as the number of dishonest players is less than n/6.Comment: Masters Thesis. Based on Joint work with Claude Crepeau and Daniel Gottesman. Full version is in preparatio

    Antisymmetric multi-partite quantum states and their applications

    Get PDF
    Entanglement is a powerful resource for processing quantum information. In this context pure, maximally entangled states have received considerable attention. In the case of bipartite qubit-systems the four orthonormal Bell-states are of this type. One of these Bell states, the singlet Bell-state, has the additional property of being antisymmetric with respect to particle exchange. In this contribution we discuss possible generalizations of this antisymmetric Bell-state to cases with more than two particles and with single-particle Hilbert spaces involving more than two dimensions. We review basic properties of these totally antisymmetric states. Among possible applications of this class of states we analyze a new quantum key sharing protocol and methods for comparing quantum states

    Generalized parity measurements

    Full text link
    Measurements play an important role in quantum computing (QC), by either providing the nonlinearity required for two-qubit gates (linear optics QC), or by implementing a quantum algorithm using single-qubit measurements on a highly entangled initial state (cluster state QC). Parity measurements can be used as building blocks for preparing arbitrary stabilizer states, and, together with 1-qubit gates are universal for quantum computing. Here we generalize parity gates by using a higher dimensional (qudit) ancilla. This enables us to go beyond the stabilizer/graph state formalism and prepare other types of multi-particle entangled states. The generalized parity module introduced here can prepare in one-shot, heralded by the outcome of the ancilla, a large class of entangled states, including GHZ_n, W_n, Dicke states D_{n,k}, and, more generally, certain sums of Dicke states, like G_n states used in secret sharing. For W_n states it provides an exponential gain compared to linear optics based methods.Comment: 7 pages, 1 fig; updated to the published versio
    • …
    corecore