2,603 research outputs found

    Integrable mappings and polynomial growth

    Full text link
    We describe birational representations of discrete groups generated by involutions, having their origin in the theory of exactly solvable vertex-models in lattice statistical mechanics. These involutions correspond respectively to two kinds of transformations on q×qq \times q matrices: the inversion of the q×qq \times q matrix and an (involutive) permutation of the entries of the matrix. We concentrate on the case where these permutations are elementary transpositions of two entries. In this case the birational transformations fall into six different classes. For each class we analyze the factorization properties of the iteration of these transformations. These factorization properties enable to define some canonical homogeneous polynomials associated with these factorization properties. Some mappings yield a polynomial growth of the complexity of the iterations. For three classes the successive iterates, for q=4q=4, actually lie on elliptic curves. This analysis also provides examples of integrable mappings in arbitrary dimension, even infinite. Moreover, for two classes, the homogeneous polynomials are shown to satisfy non trivial non-linear recurrences. The relations between factorizations of the iterations, the existence of recurrences on one or several variables, as well as the integrability of the mappings are analyzed.Comment: 45 page

    Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space

    Get PDF
    We investigate the dynamics of chaotic trajectories in simple yet physically important Hamiltonian systems with non-hierarchical borders between regular and chaotic regions with positive measures. We show that the stickiness to the border of the regular regions in systems with such a sharply divided phase space occurs through one-parameter families of marginally unstable periodic orbits and is characterized by an exponent \gamma= 2 for the asymptotic power-law decay of the distribution of recurrence times. Generic perturbations lead to systems with hierarchical phase space, where the stickiness is apparently enhanced due to the presence of infinitely many regular islands and Cantori. In this case, we show that the distribution of recurrence times can be composed of a sum of exponentials or a sum of power-laws, depending on the relative contribution of the primary and secondary structures of the hierarchy. Numerical verification of our main results are provided for area-preserving maps, mushroom billiards, and the newly defined magnetic mushroom billiards.Comment: To appear in Phys. Rev. E. A PDF version with higher resolution figures is available at http://www.pks.mpg.de/~edugal
    • …
    corecore