5,712 research outputs found

    An Improved Memory State Feedback RMPC for Uncertain Constrained Linear Systems with Multiple Uncertain Delays

    Get PDF
    The problem of robust asymptotic stabilization is considered for a class of discrete-time uncertain linear systems with multiple uncertain time-delayed states and input constraints. Compared with other works in the literature, the proposed approach takes the information of the delayed states with the estimated time-delays indices into full consideration. Based on the predictive control principle of receding horizon optimization and Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques, a time-delayed state dependent quadratic function is considered for incorporating MPC problem formulation. The robust MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. The proposed approach allows for the synthesis of robust memory state feedback controllers with respect to uncertainties on the implemented delay. Since developing the improved memory state feedback controller, the novel improved method is much less conservative and more general. Finally, the numerical simulation results prove availability of the proposed method

    On general systems with network-enhanced complexities

    Get PDF
    In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties

    UAV as a Reliable Wingman: A Flight Demonstration

    Get PDF
    In this brief, we present the results from a flight experiment demonstrating two significant advances in software enabled control: optimization-based control using real-time trajectory generation and logical programming environments for formal analysis of control software. Our demonstration platform consisted of a human-piloted F-15 jet flying together with an autonomous T-33 jet. We describe the behavior of the system in two scenarios. In the first, nominal state communications were present and the autonomous aircraft maintained formation as the human pilot flew maneuvers. In the second, we imposed the loss of high-rate communications and demonstrated an autonomous safe “lost wingman” procedure to increase separation and reacquire contact. The flight demonstration included both a nominal formation flight component and an execution of the lost wingman scenario

    Robust Constrained Model Predictive Control using Linear Matrix Inequalities

    Get PDF
    The primary disadvantage of current design techniques for model predictive control (MPC) is their inability to deal explicitly with plant model uncertainty. In this paper, we present a new approach for robust MPC synthesis which allows explicit incorporation of the description of plant uncertainty in the problem formulation. The uncertainty is expressed both in the time domain and the frequency domain. The goal is to design, at each time step, a state-feedback control law which minimizes a "worst-case" infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques, the problem of minimizing an upper bound on the "worst-case" objective function, subject to input and output constraints, is reduced to a convex optimization involving linear matrix inequalities (LMIs). It is shown that the feasible receding horizon state-feedback control design robustly stabilizes the set of uncertain plants under consideration. Several extensions, such as application to systems with time-delays and problems involving constant set-point tracking, trajectory tracking and disturbance rejection, which follow naturally from our formulation, are discussed. The controller design procedure is illustrated with two examples. Finally, conclusions are presented

    Finite-time behavior of inner systems

    Get PDF
    In this paper, we investigate how nonminimum phase characteristics of a dynamical system affect its controllability and tracking properties. For the class of linear time-invariant dynamical systems, these characteristics are determined by transmission zeros of the inner factor of the system transfer function. The relation between nonminimum phase zeros and Hankel singular values of inner systems is studied and it is shown how the singular value structure of a suitably defined operator provides relevant insight about system invertibility and achievable tracking performance. The results are used to solve various tracking problems both on finite as well as on infinite time horizons. A typical receding horizon control scheme is considered and new conditions are derived to guarantee stabilizability of a receding horizon controller

    Localized LQR Optimal Control

    Get PDF
    This paper introduces a receding horizon like control scheme for localizable distributed systems, in which the effect of each local disturbance is limited spatially and temporally. We characterize such systems by a set of linear equality constraints, and show that the resulting feasibility test can be solved in a localized and distributed way. We also show that the solution of the local feasibility tests can be used to synthesize a receding horizon like controller that achieves the desired closed loop response in a localized manner as well. Finally, we formulate the Localized LQR (LLQR) optimal control problem and derive an analytic solution for the optimal controller. Through a numerical example, we show that the LLQR optimal controller, with its constraints on locality, settling time, and communication delay, can achieve similar performance as an unconstrained H2 optimal controller, but can be designed and implemented in a localized and distributed way.Comment: Extended version for 2014 CDC submissio

    State-space approach to nonlinear predictive generalized minimum variance control

    Get PDF
    A Nonlinear Predictive Generalized Minimum Variance (NPGMV) control algorithm is introduced for the control of nonlinear discrete-time multivariable systems. The plant model is represented by the combination of a very general nonlinear operator and also a linear subsystem which can be open-loop unstable and is represented in state-space model form. The multi-step predictive control cost index to be minimised involves both weighted error and control signal costing terms. The solution for the control law is derived in the time-domain using a general operator representation of the process. The controller includes an internal model of the nonlinear process but because of the assumed structure of the system the state observer is only required to be linear. In the asymptotic case, where the plant is linear, the controller reduces to a state-space version of the well known GPC controller

    Task Release Control for Decision Making Queues

    Full text link
    We consider the optimal duration allocation in a decision making queue. Decision making tasks arrive at a given rate to a human operator. The correctness of the decision made by human evolves as a sigmoidal function of the duration allocated to the task. Each task in the queue loses its value continuously. We elucidate on this trade-off and determine optimal policies for the human operator. We show the optimal policy requires the human to drop some tasks. We present a receding horizon optimization strategy, and compare it with the greedy policy.Comment: 8 pages, Submitted to American Controls Conference, San Francisco, CA, June 201
    • …
    corecore