296 research outputs found

    General parameterised refinement and recursion for the M-net calculus

    Get PDF
    AbstractThe algebra of M-nets, a high-level class of labelled Petri nets, was introduced in order to cope with the size problem of the low-level Petri box calculus, especially when applied as semantical domain for parallel programming languages. General, unrestricted and parameterised refinement and recursion operators, allowing to represent the (possibly recursive and concurrent) procedure call mechanism, are introduced into the M-net calculus

    Advanced reduction techniques for model checking

    Get PDF

    Behavioural Types: from Theory to Tools

    Get PDF
    This book presents research produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems (BETTY), a European research network that was funded from October 2012 to October 2016. The technical theme of BETTY was the use of behavioural type systems in programming languages, to specify and verify properties of programs beyond the traditional use of type systems to describe data processing. A significant area within behavioural types is session types, which concerns the use of type-theoretic techniques to describe communication protocols so that static typechecking or dynamic monitoring can verify that protocols are implemented correctly. This is closely related to the topic of choreography, in which system design starts from a description of the overall communication flows. Another area is behavioural contracts, which describe the obligations of interacting agents in a way that enables blame to be attributed to the agent responsible for failed interaction. Type-theoretic techniques can also be used to analyse potential deadlocks due to cyclic dependencies between inter-process interactions. BETTY was organised into four Working Groups: (1) Foundations; (2) Security; (3) Programming Languages; (4) Tools and Applications. Working Groups 1–3 produced “state-of-the-art reports”, which originally intended to take snapshots of the field at the time the network started, but grew into substantial survey articles including much research carried out during the network [1–3]. The situation for Working Group 4 was different. When the network started, the community had produced relatively few implementations of programming languages or tools. One of the aims of the network was to encourage more implementation work, and this was a great success. The community as a whole has developed a greater interest in putting theoretical ideas into practice. The sixteen chapters in this book describe systems that were either completely developed, or substantially extended, during BETTY. The total of 41 co-authors represents a significant proportion of the active participants in the network (around 120 people who attended at least one meeting). The book is a report on the new state of the art created by BETTY in xv xvi Preface the area of Working Group 4, and the title “Behavioural Types: from Theory to Tools” summarises the trajectory of the community during the last four years. The book begins with two tutorials by Atzei et al. on contract-oriented design of distributed systems. Chapter 1 introduces the CO2 contract specifi- cation language and the Diogenes toolchain. Chapter 2 describes how timing constraints can be incorporated into the framework and checked with the CO2 middleware. Part of the CO2 middleware is a monitoring system, and the theme of monitoring continues in the next two chapters. In Chapter 3, Attard et al. present detectEr, a runtime monitoring tool for Erlang programs that allows correctness properties to be expressed in Hennessy-Milner logic. In Chapter 4, which is the first chapter about session types, Neykova and Yoshida describe a runtime verification framework for Python programs. Communication protocols are specified in the Scribble language, which is based on multiparty session types. The next three chapters deal with choreographic programming. In Chap- ter 5, Debois and Hildebrandt present a toolset for working with dynamic condition response (DCR) graphs, which are a graphical formalism for choreography. Chapter 6, by Lange et al., continues the graphical theme with ChorGram, a tool for synthesising global graphical choreographies from collections of communicating finite-state automata. Giallorenzo et al., in Chapter 7, consider runtime adaptation. They describe AIOCJ, a choreographic programming language in which runtime adaptation is supported with a guarantee that it doesn’t introduce deadlocks or races. Deadlock analysis is important in other settings too, and there are two more chapters about it. In Chapter 8, Padovani describes the Hypha tool, which uses a type-based approach to check deadlock-freedom and lock-freedom of systems modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a tool for analysing deadlocks in Java programs; this tool, called JaDA, is based on a behavioural type system. The next three chapters report on projects that have added session types to functional programming languages in order to support typechecking of communication-based code. In Chapter 10, Orchard and Yoshida describe an implementation of session types in Haskell, and survey several approaches to typechecking the linearity conditions required for safe session implemen- tation. In Chapter 11, Melgratti and Padovani describe an implementation of session types in OCaml. Their system uses runtime linearity checking. In Chapter 12, Lindley and Morris describe an extension of the web programming language Links with session types; their work contrasts with the previous two chapters in being less constrained by an existing language design. Continuing the theme of session types in programming languages, the next two chapters describe two approaches based on Java. Hu’s work, presented in Chapter 13, starts with the Scribble description of a multiparty session type and generates an API in the form of a collection of Java classes, each class containing the communication methods that are available in a particular state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble specification. Their StMungo tool generates an API as a single class with an associated typestate specification to constrain sequences of method calls. Code that uses the API can be checked for correctness with the Mungo typechecker. Finally, there are two chapters about programming with the MPI libraries. Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble, to describe protocols that parametric in the number of runtime roles. From a Pabble specification they generate C code that uses MPI for communication and is guaranteed correct by construction. Chapter 16, by Ng et al., describes the ParTypes framework for analysing existing C+MPI programs with respect to protocols defined in an extension of Scribble. We hope that the book will serve a useful purpose as a report on the activities of COST Action IC1201 and as a survey of programming languages and tools based on behavioural types

    Safe and scalable parallel programming with session types

    Get PDF
    Parallel programming is a technique that can coordinate and utilise multiple hardware resources simultaneously, to improve the overall computation performance. However, reasoning about the communication interactions between the resources is difficult. Moreover, scaling an application often leads to increased number and complexity of interactions, hence we need a systematic way to ensure the correctness of the communication aspects of parallel programs. In this thesis, we take an interaction-centric view of parallel programming, and investigate applying and adapting the theory of Session Types, a formal typing discipline for structured interaction-based communication, to guarantee the lack of communication mismatches and deadlocks in concurrent systems. We focus on scalable, distributed parallel systems that use message-passing for communication. We explore programming language primitives, tools and frameworks to simplify parallel programming. First, we present the design and implementation of Session C, a program ming toolchain for message-passing parallel programming. Session C can ensure deadlock freedom, communication safety and global progress through static type checking, and supports optimisations by refinements through session subtyping. Then we introduce Pabble, a protocol description language for designing parametric interaction protocols. The language can capture scalable interaction patterns found in parallel applications, and guarantees communication-safety and deadlock-freedom despite the undecidability of the underlying parameterised session type theory. Next, we demonstrate an application of Pabble in a workflow that combines Pabble protocols and computation kernel code describing the sequential computation behaviours, to generate a Message-Passing Interface (MPI) parallel application. The framework guarantees, by construction, that generated code are free from communication errors and deadlocks. Finally, we formalise an extension of binary session types and new language primitives for safe and efficient implementations of multiparty parallel applications in a binary server-client programming environment. Our exploration with session-based parallel programming shows that it is a feasible and practical approach to guaranteeing communication aspects of complex, interaction-based scalable parallel programming.Open Acces

    Behavioural Types: from Theory to Tools

    Get PDF
    This book presents research produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems (BETTY), a European research network that was funded from October 2012 to October 2016. The technical theme of BETTY was the use of behavioural type systems in programming languages, to specify and verify properties of programs beyond the traditional use of type systems to describe data processing. A significant area within behavioural types is session types, which concerns the use of type-theoretic techniques to describe communication protocols so that static typechecking or dynamic monitoring can verify that protocols are implemented correctly. This is closely related to the topic of choreography, in which system design starts from a description of the overall communication flows. Another area is behavioural contracts, which describe the obligations of interacting agents in a way that enables blame to be attributed to the agent responsible for failed interaction. Type-theoretic techniques can also be used to analyse potential deadlocks due to cyclic dependencies between inter-process interactions. BETTY was organised into four Working Groups: (1) Foundations; (2) Security; (3) Programming Languages; (4) Tools and Applications. Working Groups 1–3 produced “state-of-the-art reports”, which originally intended to take snapshots of the field at the time the network started, but grew into substantial survey articles including much research carried out during the network [1–3]. The situation for Working Group 4 was different. When the network started, the community had produced relatively few implementations of programming languages or tools. One of the aims of the network was to encourage more implementation work, and this was a great success. The community as a whole has developed a greater interest in putting theoretical ideas into practice. The sixteen chapters in this book describe systems that were either completely developed, or substantially extended, during BETTY. The total of 41 co-authors represents a significant proportion of the active participants in the network (around 120 people who attended at least one meeting). The book is a report on the new state of the art created by BETTY in xv xvi Preface the area of Working Group 4, and the title “Behavioural Types: from Theory to Tools” summarises the trajectory of the community during the last four years. The book begins with two tutorials by Atzei et al. on contract-oriented design of distributed systems. Chapter 1 introduces the CO2 contract specifi- cation language and the Diogenes toolchain. Chapter 2 describes how timing constraints can be incorporated into the framework and checked with the CO2 middleware. Part of the CO2 middleware is a monitoring system, and the theme of monitoring continues in the next two chapters. In Chapter 3, Attard et al. present detectEr, a runtime monitoring tool for Erlang programs that allows correctness properties to be expressed in Hennessy-Milner logic. In Chapter 4, which is the first chapter about session types, Neykova and Yoshida describe a runtime verification framework for Python programs. Communication protocols are specified in the Scribble language, which is based on multiparty session types. The next three chapters deal with choreographic programming. In Chap- ter 5, Debois and Hildebrandt present a toolset for working with dynamic condition response (DCR) graphs, which are a graphical formalism for choreography. Chapter 6, by Lange et al., continues the graphical theme with ChorGram, a tool for synthesising global graphical choreographies from collections of communicating finite-state automata. Giallorenzo et al., in Chapter 7, consider runtime adaptation. They describe AIOCJ, a choreographic programming language in which runtime adaptation is supported with a guarantee that it doesn’t introduce deadlocks or races. Deadlock analysis is important in other settings too, and there are two more chapters about it. In Chapter 8, Padovani describes the Hypha tool, which uses a type-based approach to check deadlock-freedom and lock-freedom of systems modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a tool for analysing deadlocks in Java programs; this tool, called JaDA, is based on a behavioural type system. The next three chapters report on projects that have added session types to functional programming languages in order to support typechecking of communication-based code. In Chapter 10, Orchard and Yoshida describe an implementation of session types in Haskell, and survey several approaches to typechecking the linearity conditions required for safe session implemen- tation. In Chapter 11, Melgratti and Padovani describe an implementation of session types in OCaml. Their system uses runtime linearity checking. In Chapter 12, Lindley and Morris describe an extension of the web programming language Links with session types; their work contrasts with the previous two chapters in being less constrained by an existing language design. Continuing the theme of session types in programming languages, the next two chapters describe two approaches based on Java. Hu’s work, presented in Chapter 13, starts with the Scribble description of a multiparty session type and generates an API in the form of a collection of Java classes, each class containing the communication methods that are available in a particular state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble specification. Their StMungo tool generates an API as a single class with an associated typestate specification to constrain sequences of method calls. Code that uses the API can be checked for correctness with the Mungo typechecker. Finally, there are two chapters about programming with the MPI libraries. Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble, to describe protocols that parametric in the number of runtime roles. From a Pabble specification they generate C code that uses MPI for communication and is guaranteed correct by construction. Chapter 16, by Ng et al., describes the ParTypes framework for analysing existing C+MPI programs with respect to protocols defined in an extension of Scribble. We hope that the book will serve a useful purpose as a report on the activities of COST Action IC1201 and as a survey of programming languages and tools based on behavioural types

    Behavioural Types

    Get PDF
    Behavioural type systems in programming languages support the specification and verification of properties of programs beyond the traditional use of type systems to describe data processing. A major example of such a property is correctness of communication in concurrent and distributed systems, motivated by the importance of structured communication in modern software. Behavioural Types: from Theory to Tools presents programming languages and software tools produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems, a European research network that was funded from October 2012 to October 2016. As a survey of the most recent developments in the application of behavioural type systems, it is a valuable reference for researchers in the field, as well as an introduction to the area for graduate students and software developers

    A Polynomial Translation of pi-calculus FCPs to Safe Petri Nets

    Full text link
    We develop a polynomial translation from finite control pi-calculus processes to safe low-level Petri nets. To our knowledge, this is the first such translation. It is natural in that there is a close correspondence between the control flows, enjoys a bisimulation result, and is suitable for practical model checking.Comment: To appear in special issue on best papers of CONCUR'12 of Logical Methods in Computer Scienc

    Behavioural Types

    Get PDF
    Behavioural type systems in programming languages support the specification and verification of properties of programs beyond the traditional use of type systems to describe data processing. A major example of such a property is correctness of communication in concurrent and distributed systems, motivated by the importance of structured communication in modern software. Behavioural Types: from Theory to Tools presents programming languages and software tools produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems, a European research network that was funded from October 2012 to October 2016. As a survey of the most recent developments in the application of behavioural type systems, it is a valuable reference for researchers in the field, as well as an introduction to the area for graduate students and software developers

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    On Language Processors and Software Maintenance

    Get PDF
    This work investigates declarative transformation tools in the context of software maintenance. Besides maintenance of the language specification, evolution of a software language requires the adaptation of the software written in that language as well as the adaptation of the software that transforms software written in the evolving language. This co-evolution is studied to derive automatic adaptations of artefacts from adaptations of the language specification. Furthermore, AOP for Prolog is introduced to improve maintainability of language specifications and derived tools.Die Arbeit unterstützt deklarative Transformationswerkzeuge im Kontext der Softwarewartung. Neben der Wartung der Sprachbeschreibung erfordert die Evolution einer Sprache sowohl die Anpassung der Software, die in dieser Sprache geschrieben ist als auch die Anpassung der Software, die diese Software transformiert. Diese Koevolution wird untersucht, um automatische Anpassungen von Artefakten von Anpassungen der Sprachbeschreibungen abzuleiten. Weiterhin wird AOP für Prolog eingeführt, um die Wartbarkeit von Sprachbeschreibungen und den daraus abgeleiteten Werkzeugen zu erhöhen
    • …
    corecore